Prediction of neonatal complications based on quantitative proteome analysisin blood of pregnant women with fetal growth restriction

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Objective: The objective of the study was to investigate relationship between early neonatal complications and plasma proteome composition in pregnant women diagnosed with fetal growth restriction.

Materials and methods: This pilot case-control study included 40 pairs of "pregnant woman – newborn baby". Four groups were formed: Group I and group II were the main groups, group III and group IV were the comparison groups. Group I was comprised of women with early fetal growth restriction (FGR) (<32 weeks) (n=10 pairs); group II was comprised of women with late FGR (≥32 weeks) (n=10 pairs). Group III and group IV consisted of pregnant women, who delivered before and after 32 weeks (n=10 pairs/n=10 pairs) (the comparison group). Confirmation of the diagnosis of fetal growth restriction, as well as definition of normal body weight in the group of women with preterm births (before and after 32 weeks), postnatal assessment of weight and growth indicators in newborns (n=40) was performed according to the INTERGROWTH-21st centile charts that reflected the international consensus reached by the members of Neonatal Group. Quantitative analysis of 125 plasma proteins was performed using BAK 125 plasma proteomics kit (MRM Proteomics Inc., Montreal, Canada) by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Based on the support vector machine used for classification, predictive models for possible development of asphyxia and intraventricular hemorrhage in newborns were created.

Results: Based on the results of quantitative proteomic analysis of maternal plasma proteins, two prognostic models were developed. Model 1 (AUC=0.96), including the proteins α-1-acid glycoprotein 1, α-1-antichimotrypsin, α-1-β-glycoprotein, α-2-macroglobulin, antithrombin III, apolypoprotein A-IV, apolypoprotein С–II, apolypoprotein С-IV, carboanhydrase 1, CD5 antigen like protein, ceruloplasmin, clasterin, complement C3, complement component C9, complement factor H, transcortin, fibrinogen α-chain, fibrinogen β-chain, fibronectin, fibulin-1, heparin cofactor II, kallistatin, keratin, type II cytoskeletal 2 epidermal, pregnancy zone protein, prothrombin, ferotransferrin, vitamin К-depended protein S, vitamin К-depended protein Z, vitronectin as variables, with 92% sensitivity and 76% specificity will enable to detect the risks for intraventricular hemorrhage in newborns. Model 2 (AUC=0.83), including the proteins α-1-antichimotrypsin, apolypoprotein С–III, apolypoprotein D, β-2-glycoprotein 1, complement C1q subcomponent subunit C, complement component C9, kininogen-1, plasma protease C1 inhibitor, pregnancy zone protein, AMBP protein, prothrombin, vitronectin as variables with 67% sensitivity and 100% specificity, will enable to predict birth asphyxia.

Conclusion: Using the plasma proteome of pregnant women to predict the development of birth asphyxia and intraventricular hemorrhage in newborns in early neonatal period will improve the quality of medical care, as well as reduce neonatal morbidity and mortality in the group of infants with intrauterine growth restriction (IUGR).

Full Text

Restricted Access

About the authors

Maria V. Volochaeva

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Author for correspondence.
Email: volochaeva.m@yandex.ru
ORCID iD: 0000-0001-8953-7952

PhD, Senior Researcher at the Department of Regional Cooperation and Integration, Physician at the 1 Maternity Department

Russian Federation, Moscow

Alisa O. Tokareva

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: alisa.tokareva@phystech.edu
ORCID iD: 0000-0001-5918-9045

PhD, Specialist at the Laboratory of Clinical Proteomics

Russian Federation, Moscow

Anna E. Bugrova

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences

Email: a_bugrova@oparina4.ru

PhD, Senior Researcher at the Laboratory of Proteomics of Human Reproduction

Russian Federation, Moscow; Moscow

Alexander G. Brzhozovskiy

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Skolkovo Institute of Science and Technology

Email: agb.imbp@gmail.com

PhD, Senior Researcher at the Laboratory of Proteomics of Human Reproduction, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Junior Researcher at the Laboratory of Mass Spectrometry, Skolkovo Institute of Science and Technology

Russian Federation, Moscow; Moscow

Evgenii N. Kukaev

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; V.L. Talrose Institute for Energy Problems of Chemical Physics, Federal Research Center of Chemical Physics of the Russian Academy of Sciences Moscow

Email: e_kukaev@oparina4.ru
ORCID iD: 0000-0002-8397-3574

PhD, Senior Researcher at the Laboratory of Clinical Proteomics, Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia; Researcher, Semenov Federal Research Center for Chemical Physics

Russian Federation, Moscow; Moscow

Victor L. Tyutyunnik

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: tioutiounnik@mail.ru
ORCID iD: 0000-0002-5830-5099
SPIN-code: 1963-1359
Scopus Author ID: 56190621500
ResearcherId: B-2364-2015

Professor, Dr. Med. Sci., Leading Researcher at the Center for Scientific and Clinical Research

Russian Federation, Moscow

Natalia E. Kan

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: kan-med@mail.ru
ORCID iD: 0000-0001-5087-5946
SPIN-code: 5378-8437
Scopus Author ID: 57008835600
ResearcherId: B-2370-2015

Professor, Dr. Med. Sci., Deputy Director of Science

Russian Federation, Moscow

Natalia L. Starodubtseva

Academician V.I. Kulakov National Medical Research Centre of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: n_starodubtseva@oparina4.ru
ORCID iD: 0000-0001-6650-5915

PhD, Head of the Laboratory of Clinical Proteomics

Russian Federation, Moscow

References

  1. Melamed N., Baschat A., Yinon Y., Athanasiadis A., Mecacci F., Figueras F. et al. FIGO (international Federation of Gynecology and obstetrics) initiative on fetal growth: best practice advice for screening, diagnosis, and management of fetal growth restriction. Int. J. Gynaecol. Obstet. 2021; 152(1): 3-57. https://dx.doi.org/10.1002/ijgo.13522.
  2. Miller S.L., Huppi P.S., Mallard C. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. J. Physiol. 2016; 594: 807-23. https://dx.doi.org/10.1113/JP271402.
  3. Morsing E., Asard M., Ley D., Stjernqvist K., Marsál K. Cognitive function after intrauterine growth restriction and very preterm birth. Pediatrics. 2011; 127: e874-82. https://dx.doi.org/ 10.1542/peds.2010-1821.
  4. Гасанбекова А.П., Ломова Н.А., Долгополова Е.Л., Титова Е.В., Карапетян Т.Э., Рюмина И.И. Ранние и отдаленные последствия для новорожденных при синдроме задержки роста плода: данные ретроспективного исследования за 2019-2021 годы. Медицинский совет. 2023; 17(6): 172-9. [Gasanbekova A.P., Lomova N.A., Dolgopolova E.L., Titova E.V., Karapetyan T.E., Ryumina I.I. Early and long-term consequences for newborns with fetus growth retardation: retrospective study data for 2019-2021. Medical Council. 2023; 17(6): 172-9. (in Russian)]. https://dx.doi.org/10.21518/ms2022-002.
  5. Wang S.F., Shu L., Sheng J., Mu M., Wang S., Tao X.Y., Xu S.J., Tao F.B. Birth weight and risk of coronary heart disease in adults: a meta-analysis of prospective cohort studies. J. Dev. Orig. Health Dis. 2014; 5(6): 408-19. https://dx.doi.org/10.1017/S2040174414000440.
  6. Bygdell M., Ohlsson C., Lilja L., Celind J., Martikainen J., Rosengren A., Kindblom J.M. Birth weight and young adult body mass index for predicting the risk of developing adult heart failure in men. Eur. J. Prev. Cardiol. 2022; 29(6): 971-8. https://dx.doi.org/10.1093/eurjpc/zwab186.
  7. Якубова Д.И., Игнатко И.В., Меграбян А.Д., Богомазова И.М. Особенности течения беременности и исходы родов при различных фенотипах задержки роста плода. Акушерство и гинекология. 2022; 8: 54-62. [Yakubova D., Ignatko I.V., Megrabian A.D., Bogomazova I.M. Features of pregnancy course and delivery outcomes in various phenotypes of fetal growth restriction. Obstetrics and Gynecology. 2022; (8): 54-62. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.8.54-62.
  8. Kim F., Bateman D.A., Goldshtrom N., Sheen J.J., Garey D. Intracranial ultrasound abnormalities and mortality in preterm infants with and without fetal growth restriction stratified by fetal Doppler study results. J. Perinatol. 2023; 4(5): 560-7. https://dx.doi.org/10.1038/s41372-023-01621-8.
  9. Misan N., Michalak S., Kapska K., Osztynowicz K., Ropacka-Lesiak M. Blood-brain barrier disintegration in growth-restricted fetuses with brain sparing effect. Int. J. Mol. Sci. 2022; 23(20): 12349. https://dx.doi.org/10.3390/ijms232012349.
  10. Министерство Российской Федерации. Клинические рекомендации. Недостаточный рост плода, требующий предоставления медицинской помощи матери (задержка роста плода). М.; 2022. 71с. [Ministry of Health of the Russian Federation. Clinical guidelines. Insufficient growth of the fetus, requiring the provision of medical care to the mother (fetal growth retardation). Moscow; 2022. 71p. (in Russian)]. https://cr.minzdrav.gov.ru/schema/722_1
  11. Leite D.F.B., de Melo E.F. Jr, Souza R.T., Kenny L.C., Cecatti J.G. Fetal and neonatal growth restriction: new criteria, renew challenges. J. Pediatr. 2018; 203: 462-3. https://dx.doi.org/10.1016/j.jpeds.2018.07.094.
  12. Рюмина И.И., Байбарина Е.Н., Нароган М.В., Маркелова М.М., Орловская И.В., Зубков В.В., Дегтярев Д.Н. Использование международных стандартов роста для оценки физического развития новорожденных и недоношенных детей. Неонатология: новости, мнения, обучение. 2023; 11(2): 48-52. [Ryumina I.I., Baibarina E.N., Narogan M.V., Markelova M.M., Orlovskaya I.V., Zubkov V.V., Degtyarev D.N. The usage of the international growth standards to assess the physical development of newborn and premature children. Neonatology: News, Opinions, Training. 2023; 11(2): 48-52. (in Russian)]. https://dx.doi.org/10.33029/2308-2402-2023-11-2-48-52.
  13. Guyon I., Weston J., Barhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning. 2002; 46: 389-422. https://dx.doi.org/10.1023/a:1012487302797.
  14. Kononikhin A.S., Zakharova N.V., Semenov S.D., Bugrova A.E., Brzhozovskiy A.G., Indeykina M.I. et al. Prognosis of Alzheimer's disease using guantitative mass spectrometry of human blood plasma proteins and machine learning. Int. J. Mol. Sci. 2022; 23(14): 7907. https://dx.doi.org/10.3390/ijms23147907.
  15. Anwar M.A., Dai D.L., Wilson-McManus J., Smith D., Francis G.A., Borchers C.H. et al. Multiplexed LC-ESI-MRM-MS-based asay for identification of coronary artery disease iomarkers in human plasma. Proteomics Clin. Appl. 2019; 13(4): e1700111. https://dx.doi.org/10.1002/prca.201700111.
  16. Bhardwaj M., Gies A., Weigl K., Tikk K., Benner A., Schrotz-King P. et al. Evaluation and validation of plasma proteins using two different protein detection methods for early detection of colorectal cancer. Cancers (Basel). 2019; 11(10): 1426. https://dx.doi.org/10.3390/cancers11101426.
  17. Starodubtseva N.L., Tokareva A.O., Volochaeva M.V., Kononikhin A.S., Brhovosky A.S., Bugrova A.E. et al. Quantitative proteomics of maternal blood plasma in isolated intrauterine grow restriction. Int. J. Mol. Sci. 2023; 24(23): 16832. https://dx.doi.org/10.3390/ijms242316832.
  18. Malacova E., Regan A., Nassar N., Raynes-Greenow C., Leonard H., Srinivasjois R. et al. Risk of stillbirth, preterm delivery, and fetal growth restriction following exposure in a previous birth: systematic review and meta-analysis. BJOG. 2018; 125(2): 183-92. https://dx.doi.org/ 10.1111/1471-0528.14906.
  19. Kesavan K., Devaskar S.U. Intrauterine growth restriction: postnatal monitoring and outcomes. Pediatr. Clin. North Am. 2019; 66(2): 403-23. https://dx.doi.org/10.1016/j.pcl.2018.12.009.
  20. Шелехин А.П., Баев О.Р., Красный А.М. Сравнение течения и исходов беременностей, осложненных гипертензивными расстройствами. Акушерство и гинекология. 2023; 1: 41-7. [Shelekhin A.P., Baev O.R., Krasnyi A.M. Comparison of the course and outcomes of pregnancies complicated by hypertensive disorders. Obstetrics and Gynecology. 2023; (1): 41-7. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.248.
  21. Boghossian N.S., Geraci M., Edwards E.M., Horbar J.D. Morbidity and mortality in small for gestational age infants at 22 to 29 veeks' gestation. Pediatrics. 2018; 141(2): e20172533. https://dx.doi.org/10.1542/peds.20172533.
  22. Malhotra A., Allison B.J., Castillo-Melendez M., Jenkin G., Polglase G.R., Miller S.L. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front. Endocrinol. (Lausanne). 2019; 10: 55. https://dx.doi.org/10.3389/fendo.2019.00055.
  23. Hundscheid T.M., Villamor-Martinez E., Villamor E. Association between endotype of prematurity and mortality: a systematic review, meta-analysis, and meta-regression. Neonatology. 2023; 120(4): 407-16. https://dx.doi.org/10.1159/000530127.
  24. Marsoosi V., Bahadori F., Esfahani F., Ghasemi-Rad M. The role of Doppler indices in predicting intra ventricular hemorrhage and perinatal mortality in fetal growth restriction. Med. Ultrason. 2012; 14(2): 125-32.
  25. Кан Н.Е., Леонова А.А., Тютюнник В.Л., Хачатрян З.В. Особенности нейрогенеза при задержке роста плода. Акушерство и гинекология. 2022; 11: 24-30. [Kan N.E., Leonova A.A., Tyutyunnik V.L., Khachatryan Z.V. Features of neurogenesis in case of fetal growth restriction. Obstetrics and Gynecology. 2022; (11): 24-30. (in Russian)]. https://dx.doi.org/10.18565/aig.2022.11.24-30.
  26. Gusar V., Ganichkina M., Chagovets V., Kan N., Sukhikh G. MiRNAs Regulating oxidative stress: a correlation with doppler sonography of uteroplacental complex and clinical state assessments of newborns in fetal growth restriction. J. Clin. Med. 2020; 9(10): 3227. https://dx.doi.org/10.3390/jcm9103227.
  27. Baschat A.A. Neurodevelopment after fetal growth restriction. Fetal Diagn. Ther. 2014; 36(2): 136-42. https://dx.doi.org/10.1159/000353631.
  28. Baschat A.A. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet. Gynecol. 2011; 37(5): 501-14. https://dx.doi.org/10.1002/uog.9008.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of correlations of maternal plasma proteins with clinical characteristics of the newborn: weight, Apgar score of the newborn at the 1st and 5th minutes, acid-base state (pH of cord blood, lactate and glucose levels), development of intraventricular hemorrhages, and length of hospital stay, where "x" - absence of statistically significant correlations (p>0.05)

Download (581KB)
3. Fig. 2. ROC curves obtained during validation of support vector machine models for prediction: "1" - intraventricular hemorrhage in a newborn in the fetal growth retardation group (model "1"); "2" - birth asphyxia in the fetal growth retardation group (model "2")

Download (114KB)

Copyright (c) 2024 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies