Experience in machine learning application to predict pregnancy loss after assisted reproductive technologies

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Relevance: Machine learning (ML) method of data analysis makes it possible to thoroughly analyze the predictors of pregnancy loss after assisted reproductive technologies (ART). Prediction of live birth rate in ART program can be made using traditional mathematical models. However, ML enables to discover hidden patterns in nonlinear relationships and determine additional correctable factors.

Objective: Prediction of miscarriage in patients who undergo infertility treatment using ART methods based on clinical, anamnestic and embryological parameters, using the decision tree algorithm combined with linear regression.

Materials and methods: The retrospective study included 1021 married couples. The study analyzed the results of clinical and laboratory examination and the parameters of stimulated cycle depending on the rates of pregnancy and miscarriage after ART using linear regression and decision tree.

Results: The most important predictors of miscarriage in ART programs were detected using two models, including age, medical history of pregnancies from the particular partner, duration of stimulation, embryo quality, as well as fertilization method.

Conslusion: Research in this area, especially using ML tools for data processing makes it possible to build a software product for personalized and integrated prediction of live births for each married couple. The obtained results can optimize the state’s financial and economic expenditures to conduct ART cycles at the expense of Compulsory Health Insurance for different groups of patients. In addition, a clear and unified algorithm facilitates the targeted impact on the most probable cause of miscarriage, taking into account optimization of product preparation time and achievement of maximum effect to reduce the rate of pregnancy loss after ART.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Yulia Drapkina

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Хат алмасуға жауапты Автор.
Email: yu_drapkina@oparina4.ru
ORCID iD: 0000-0002-0545-1607

PhD, Senior Researcher, Department of IVF named after Prof. B.V. Leonov

Ресей, Moscow

Natalya Makarova

V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia

Email: np_makarova@oparina4.ru
ORCID iD: 0000-0003-1396-7272

PhD, Leading Researcher, Department of IVF named after Prof. B.V. Leonov

Ресей, Moscow

Andrey Kalinin

Pirogov Russian National Research Medical University, Ministry of Health of Russia

Email: zoaza8@mail.ru

student of the Faculty of Medicine

Ресей, Moscow

Robert Vasiliev

Laboratory of Applied Artificial Intelligence Z-union

Email: yu_drapkina@oparina4.ru

Head; Vice-president of the Association of Laboratories for the Development of Artificial Intelligence; graduate student at the; Master of the Department of Applied Physics and Mathematics; Master of Economics; Bachelor’s degree

Ресей, Moscow

Vladislav Amelin

Laboratory of Applied Artificial Intelligence Z-union

Email: yu_drapkina@oparina4.ru

Technical Director, expert in machine learning; Master’s degree (Faculty of Computational Mathematics and Cybernetics, Department of Mathematical Methods); Bachelor’s degree

Ресей, Moscow

Әдебиет тізімі

  1. American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Gynecology. ACOG Practice Bulletin No. 200: Early Pregnancy Loss. Obstet. Gynecol. 2018; 132(5): e197-e207. https://dx.doi.org/10.1097/AOG.0000000000002899.
  2. Письмо Минздрава России от 07.06.2016 №15-4/10/2-3482 «О направлении клинических рекомендаций (протокола лечения) "Выкидыш в ранние сроки беременности: диагностика и тактика ведения"». [Letter of the Ministry of Health of Russia dated 07.06.2016 No. 15-4/10/2-3482 «On sending clinical guidelines (treatment protocol) "Miscarriage in early pregnancy: diagnosis and management tactics"». (in Russian)].
  3. Лычагин А.С., Малинина О.Ю. Невынашивание беременности: вклад мужского фактора и возможности его преодоления. Проблемы репродукции. 2017; 23(5): 106 14. [Lychagin A.S., Malinina O.Yu. Miscarriage: the role of male factor and the methods of treatment. Russian Journal of Human Reproduction. 2017; 23(5): 106-14. (in Russian)]. https://dx.doi.org/10.17116/repro2017235106-114.
  4. Тетруашвили Н.К. Привычный выкидыш. Акушерство и гинекология: новости, мнения, обучение. 2017; 4: 70-87. [Tetruashvili N.K. Habitual miscarriage. Obstetrics and gynecology: news, opinions, training. 2017; (4): 70-87. (in Russian)].
  5. Батрак Н.В., Малышкина А.И., Сотникова Н.Ю., Крошкина Н.В., Перетятко Л.П., Фатеева Н.В. Медико-социальные факторы и патогенетические механизмы ранней потери беременности у женщин с привычным невынашиванием в анамнезе. Акушерство и гинекология. 2020; 7: 79-86. [Batrak N.V., Malyshkina A.I., Sotnikova N.Yu., Kroshkina N.V., Peretyatko L.P., Fateeva N.V. Medical and social factors and pathogenetic mechanisms of early pregnancy loss in women with recurrent miscarriage. Obstetrics and Gynecology. 2020; (7): 79-86. (in Russian)]. https:// dx.doi.org/10.18565/aig.2020.7.79-86.
  6. Утробин М.В., Юрьев С.Ю. Возможности прогнозирования привычного выкидыша в предгравидарном периоде. Бюллетень медицинской науки. 2020; 2(18): 39-42. [Utrobin M.V., Yuriev S.Yu. Possibilities of predicting habitual miscarriage in the pregravidar period. Bulletin of Medical Science. 2020; 2(18): 39-42. (in Russian)].
  7. Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Калинина Е.А. Сравнение прогностических моделей, построенных с помощью разных методов машинного обучения, на примере прогнозирования результатов лечения бесплодия методом вспомогательных репродуктивных технологий. Акушерство и гинекология. 2024; 2: 97-105. [Drapkina Yu.S., Makarova N.P., Vasiliev R.A., Amelin V.V., Kalinina E.A. Comparison of predictive models built with different machine learning techniques using the example of predicting the outcome of assisted reproductive technologies. Obstetrics and Gynecology. 2024; (2): 97-105 (in Russian)]. https:// dx.doi.org/10.18565/aig.2023.263.
  8. Драпкина Ю.С., Макарова Н.П., Васильев Р.А., Амелин В.В., Франкевич В.Е., Калинина Е.А. Изучение аналитической обработки клинико-анамнестических и эмбриологических данных пациентов в программе вспомогательных репродуктивных технологий различными методами машинного обучения. Акушерство и гинекология. 2024; 3: 96-107. [Drapkina Yu.S., Makarova N.P., Vasilev R.A., Amelin V.V., Frankevich V.E., Kalinina E.A. Application of various machine learning techniques to the analysis of clinical, anamnestic, and embryological data of patients undergoing assisted reproductive technologies. Obstetrics and Gynecology. 2024; (3): 96-107 (in Russian)]. https://dx.doi.org/10.18565/aig.2023.281.
  9. Blank C., Wildeboer R.R., DeCroo I., Tilleman K., Weyers B., De Sutter P. et al. Prediction of implantation after blastocyst transfer in in vitro fertilization: a machine-learning perspective. Fertil. Steril. 2019; 111(2): 318-26. https://dx.doi.org/10.1016/j.fertnstert.2018.10.030.
  10. Barnett-Itzhaki Z., Elbaz M., Butterman R., Amar D., Amitay M., Racowsky C. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 2020; 37(10): 2405-12. https://dx.doi.org/10.1007/s10815-020-01908-1.
  11. Yuan G., Lv B., Du X., Zhang H., Zhao M., Liu Y. et al. Prediction model for missed abortion of patients treated with IVF-ET based on XGBoost: a retrospective study. PeerJ. 2023; 11: e14762. https://dx.doi.org/10.7717/peerj.14762.
  12. Crawford G.E., Ledger W.L. In vitro fertilisation/intracytoplasmic sperm injection beyond 2020. BJOG. 2019; 126(2): 237-43. https://dx.doi.org/10.1111/ 1471-0528.15526.
  13. Buca D., D'Antonio F., Liberati M., Tinari S., Pagani G., Greco P. et al. Ovarian hyperstimulation syndrome and adverse pregnancy outcome. Minerva Obstet. Gynecol. 2022; 74(2): 178-85. https://dx.doi.org/10.23736/ S2724-606X.21.04806-5.
  14. Zheng D., Zeng L., Yang R., Lian Y., Zhu Y.M., Liang X. et al. Intracytoplasmic sperm injection (ICSI) versus conventional in vitro fertilisation (IVF) in couples with non-severe male infertility (NSMI-ICSI): protocol for a multicentre randomised controlled trial. BMJ Open. 2019; 9(9): e030366. https:// dx.doi.org/10.1136/bmjopen-2019-030366.
  15. Rodrigo L. Sperm genetic abnormalities and their contribution to embryo aneuploidy & miscarriage. Best Pract. Res. Clin. Endocrinol. Metab. 2020; 34(6): 101477. https://dx.doi.org/10.1016/j.beem.2020.101477.
  16. Louis C.M., Handayani N., Aprilliana T., Polim A.A., Boediono A., Sini I. Genetic algorithm-assisted machine learning for clinical pregnancy prediction in in vitro fertilization. AJOG Glob. Rep. 2022; 3(1): 100133. https://dx.doi.org/10.1016/ j.xagr.2022.100133.
  17. Liu L., Jiao Y., Li X., Ouyang Y., Shi D. Machine learning algorithms to predict early pregnancy loss after in vitro fertilization-embryo transfer with fetal heart rate as a strong predictor. Comput. Methods Programs Biomed. 2020; 196: 105624. https://dx.doi.org/10.1016/j.cmpb.2020.105624.
  18. Leijdekkers J.A., Eijkemans M.J.C., van Tilborg T.C., Oudshoorn S.C., McLernon D.J., Bhattacharya S. et al. Predicting the cumulative chance of live birth over multiple complete cycles of in vitro fertilization: an external validation study. Hum. Reprod. 2018; 33(9): 1684-95. https://dx.doi.org/10.1093/humrep/dey263.
  19. McLernon D.J., Steyerberg E.W., Te Velde E.R., Lee A.J., Bhattacharya S. Predicting the chances of a live birth after one or more complete cycles of in vitro fertilisation: population based study of linked cycle data from 113,873 women. BMJ. 2016; 355: i5735. https://dx.doi.org/10.1136/bmj.i5735.
  20. Qiu J., Li P., Dong M., Xin X., Tan J. Personalized prediction of live birth prior to the first in vitro fertilization treatment: a machine learning method. J. Transl. Med. 2019; 17(1): 317. https://dx.doi.org/10.1186/s12967-019-2062-5.
  21. Pino V., Sanz A., Valdés N., Crosby J., Mackenna A. The effects of aging on semen parameters and sperm DNA fragmentation. JBRA Assist. Reprod. 2020; 24(1): 82-6. https://dx.doi.org/10.5935/1518-0557.20190058.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2024