The role of iron overload in the development of gestational diabetes mellitus and other metabolic disorders during pregnancy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The role of iron in the development of disorders of carbohydrate metabolism has been known for a long time. The first observations were based on the increased risk of diabetes mellitus in patients suffering from hereditary disorders of iron metabolism with increased iron deposition in the liver and pancreas in haemochromatosis. Subsequently, disorders of carbohydrate metabolism during pregnancy (gestational diabetes mellitus) were associated mainly with increased insulin resistance, impaired insulin secretion in genetically predisposed individuals, with obesity and metabolic syndrome in women before gestation. However, there is increasing evidence to support the hypothesis of the role of iron overload associated with metabolic syndrome, metabolically associated fatty liver disease, induction and progression of disorders of carbohydrate metabolism. The article presents current data on the association between disorders of iron metabolism and the risk of developing gestational diabetes mellitus. It discusses the mechanisms how ferrokinetics influence glucose intolerance and considers the role of iron supplements in the development of gestational diabetes mellitus. The review refers to the current clinical recommendations and algorithms of medical care adopted in the Russian Federation and abroad, as well as to the data of some of the most recent studies on the issue.

Conclusion: The process of iron metabolism in pregnant women is complex and involves various regulatory mechanisms. It is associated with metabolic risks that are present before pregnancy or that arise during pregnancy. Iron overload may increase the risk of developing gestational diabetes mellitus, and this should be considered when developing a personalized algorithm for monitoring pregnant women.

Full Text

Restricted Access

About the authors

Tatiana V. Saprina

Siberian State Medical University, Ministry of Health of the Russia

Author for correspondence.
Email: tanja.v.saprina@mail.ru
ORCID iD: 0000-0001-9011-8720

Dr. Med. Sci., Professor

Russian Federation, Tomsk

Nadezhda N. Musina

Siberian State Medical University, Ministry of Health of the Russia

Email: nadiezhda-musina@mail.ru
ORCID iD: 0000-0001-7148-6739

PhD

Russian Federation, Tomsk

Elizaveta S. Pushkareva

Siberian State Medical University, Ministry of Health of the Russia

Email: pushkareva.li@mail.ru
ORCID iD: 0009-0003-8363-8105

student

Russian Federation, Tomsk

References

  1. Hilton C., Sabaratnam R., Drakesmith H., Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int. J. Obes. (Lond.). 2023; 47(7): 554-63. https://dx.doi.org/10.1038/s41366-023-01299-0
  2. Kataria Y., Wu Y., Horskjær P.H., Mandrup-Poulsen T., Ellervik C. Iron status and gestational diabetes-a meta-analysis. Nutrients. 2018; 10(5): 621. https://dx.doi.org/10.3390/nu10050621
  3. Zhang Y., Lu Y., Jin L. Iron metabolism and ferroptosis in physiological and pathological pregnancy. Int. J. Mol. Sci. 2022; 23(16): 9395. https://dx.doi.org/10.3390/ijms23169395
  4. Daher R., Lefebvre T., Puy H., Karim Z. Extrahepatic hepcidin production: the intriguing outcomes of recent years. World J. Clin. Cases. 2019; 7(15): 1926-36. https://dx.doi.org/10.12998/wjcc.v7.i15.1926
  5. Xu J., Zhou F., Wang X., Mo C. Role of ferroptosis in pregnancy related diseases and its therapeutic potential. Front. Cell Dev. Biol. 2023; 11: 1083838. https://dx.doi.org/10.3389/fcell.2023.1083838
  6. Du G., Zhang Q., Huang X., Wang Y. Molecular mechanism of ferroptosis and its role in the occurrence and treatment of diabetes. Front. Genet. 2022; 13: 1018829. https://dx.doi.org/10.3389/fgene.2022.1018829
  7. Zaugg J., Solenthaler F., Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem. Pharmacol. 2022; 202: 115141. https://dx.doi.org/10.1016/j.bcp.2022.115141
  8. Miao R., Fang X., Zhang Ym, Wei J., Zhang Y., Tian J. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis. 2023; 14(3): 186. https:// dx.doi.org/10.1038/s41419-023-05708-0
  9. Мусина Н.Н., Славкина Я.С., Петрухина Д.А., Зима А.П., Прохоренко Т.С., Саприна Т.В. О роли дисметаболической перегрузки железом в формировании неалкогольной жировой болезни печени и индукции нарушений углеводного обмена. Ожирение и метаболизм. 2023; 20(3): 259-68. [Musina N.N., Slavkina Ya.S., Petrukhina D.A., Zima A.P., Prokhorenko T.S., Saprina T.V. The role of dysmetabolic iron overload syndrome in non-alcoholic fatty liver disease and carbohydrate metabolism disorders induction. Obesity and metabolism. 2023; 20(3): 259-68 (in Russian)]. https://dx.doi.org/10.14341/omet13013
  10. Yang K., Yang Y., Pan B., Fu S., Cheng J., Liu J. Relationship between iron metabolism and gestational diabetes mellitus: A systematic review and meta analysis. Asia Pac. J. Clin. Nutr. 2022; 31(2): 242-54. https:// dx.doi.org/10.6133/apjcn.202206_31(2).0010
  11. Salazar-Petres E.R., Sferruzzi-Perri A.N. Pregnancy-induced changes in β-cell function: what are the key players?. J. Physiol. 2022; 600(5): 1089-117. https://dx.doi.org/10.1113/JP281082
  12. Fisher A.L., Nemeth E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017; 106 (Suppl 6): 1567S-1574S. https://doi.org/10.3945/ajcn.117.155812
  13. Министерство здравоохранения Российской Федерации. Клинические рекомендации. Железодефицитная анемия. 2024. [Ministry of Health of the Russian Federation. Clinical guidelines. Iron-deficiency anemia. 2024. (in Russian)].
  14. Cao C., O'Brien K.O. Pregnancy and iron homeostasis: an update. Nutr. Rev. 2013; 71(1): 35-51. https://dx.doi.org/10.1111/j.1753-4887.2012.00550.x
  15. Abbassi-Ghanavati M., Greer L.G., Cunningham F.G. Pregnancy and laboratory studies: a reference table for clinicians. Obstet. Gynecol. 2009; 114(6): 1326-31. https://dx.doi.org/10.1097/AOG.0b013e3181c2bde8
  16. Feng Y., Feng Q., Lv Y., Song X., Qu H., Chen Y. The relationship between iron metabolism, stress hormones, and insulin resistance in gestational diabetes mellitus. Nutr. Diabetes. 2020; 10(1): 17. https://dx.doi.org/10.1038/ s41387-020-0122-9
  17. Rawal S., Hinkle S.N., Bao W., Zhu Y., Grewal J., Albert P.S. et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia. 2017; 60(2): 249-57. https://dx.doi.org/10.1007/s00125-016-4149-3
  18. Kim H.Y., Kim J., Noh E., Ahn K.H., Cho G.J., Hong S.C. et al. Prepregnancy hemoglobin levels and gestational diabetes mellitus in pregnancy. Diabetes Res. Clin. Pract. 2021; 171: 108608. https://dx.doi.org/10.1016/j.diabres.2020.108608
  19. Tiongco R.E., Arceo E., Clemente B., Pineda-Cortel M.R. Association of maternal iron deficiency anemia with the risk of gestational diabetes mellitus: a meta-analysis. Arch. Gynecol. Obstet. 2019; 299(1): 89-95. https://dx.doi.org/10.1007/s00404-018-4932-0
  20. Durrani L., Ejaz S., Tavares L.B., Mohyeldin M., Abureesh D., Boorenie M. et al. Correlation between high serum ferritin level and gestational diabetes: a systematic review. Cureus. 2021; 13(10): e18990. https://dx.doi.org/10.7759/cureus.18990
  21. Kim J.D., Lim D.M., Park K.Y., Park S.E., Rhee E.J., Park C.Y. et al. Serum transferrin predicts new-onset type 2 diabetes in Koreans: a 4-year retrospective longitudinal study. Endocrinol. Metab. (Seoul). 2020; 35(3): 610-7. https://dx.doi.org/10.3803/EnM.2020.721
  22. Hu J., Gillies C.L., Lin S., Stewart Z.A., Melford S.E., Abrams K.R. et al. Association of maternal lipid profile and gestational diabetes mellitus: A systematic review and meta-analysis of 292 studies and 97,880 women. EClinicalMedicine. 2021; 34: 100830. https://dx.doi.org/10.1016/j.eclinm.2021.100830
  23. Zaugg J., Melhem H., Huang X., Wegner M., Baumann M., Surbek D. et al. Gestational diabetes mellitus affects placental iron homeostasis: Mechanism and clinical implications. FASEB J. 2020; 34(6): 7311-29. https:// dx.doi.org/10.1096/fj.201903054R
  24. Wu W., Tang N., Zeng J., Jing J., Cai L. Dietary protein patterns during pregnancy are associated with risk of gestational diabetes mellitus in Chinese pregnant women. Nutrients. 2022; 14(8): 1623. https://dx.doi.org/10.3390/nu14081623
  25. Petry C.J. Iron supplementation in pregnancy and risk of gestational diabetes: a narrative review. Nutrients. 2022; 14(22): 4791. https://dx.doi.org/10.3390/nu14224791
  26. Si S., Shen Y., Xin X., Mo M., Shao B., Wang S. et al. Hemoglobin concentration and iron supplement during pregnancy were associated with an increased risk of gestational diabetes mellitus. J Diabetes. 2021; 13(3): 211-21. https://dx.doi.org/10.1111/1753-0407.13101
  27. Zhang X., Wu M., Zhong C., Huang L., Zhang Y., Chen R. et al. Association between maternal plasma ferritin concentration, iron supplement use, and the risk of gestational diabetes: a prospective cohort study. Am. J. Clin. Nutr. 2021; 114(3): 1100-6. https://dx.doi.org/10.1093/ajcn/ nqab162
  28. WHO. WHO recommendations on antenatal care for a positive pregnancy experience - Highlights and Key Messages. Highlights and Key Messages from the World Health Organization’s 2016 Global Recommendations for Routine Antenatal Care. 30 January 2018. Available at: https://www.who.int/publications/i/item/WHO-RHR-18.02
  29. Серов В.Н. Информационное письмо Российского общества акушеров-гинекологов. РМЖ. Мать и дитя. 2019; 2(2): 84-8. [Serov V.N. Information letter of the Russian Society of Obstetricians and Gynecologists. Russian Journal of Woman and Child Health. 2019; 2(2): 84-8 (in Russian)]. https://dx.doi.org/10.32364/2618-8430-2019-2-2-84-88
  30. Pavord S., Daru J., Prasannan N., Robinson S., Stanworth S., Girling J.; BSH Committee. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2020; 188(6): 819-30. https://dx.doi.org/10.1111/ bjh.16221

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Scheme of the transcellular mechanism of absorption and further metabolism of iron [3]

Download (364KB)

Copyright (c) 2025 Bionika Media