Combined action of cationic peptide protegrins and antiseptics on biofilms formed by gram-positive and gram-negative bacteria

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background: The problems preventing successful treatment of recurrent infections are related to bacteria forming biofilms, which repeatedly increase microbe resistance to antibiotics. Therefore, the search for new anti-biofilm agents is an important issue. One of the most promising areas is the use of antimicrobial peptides.

Objective: To analyze the combined action of cationic antimicrobial peptide Protegrin-1 (PG-1) or Protegrin-2 (PG-2) with various antiseptics (Miramistin, Chlorhexidine, Povidone iodine, Dequalinium chloride, Prontosan wound irrigation solution (Prontosan solution)) used in the treatment of infections where the recurrent course is associated with biofilm formation.

Materials and methods: The antimicrobial activity against planktonic bacteria was determined using serial dilution method in liquid nutrient medium by chessboard titration to evaluate the co-activity. The antibiofilm activity was studied using crystal violet dye and viability marker, 2,3,5-triphenyltetrazolium chloride.

Results: Synergistic effects against planktonic forms of bacteria were observed when PG-1 or PG-2 were combined with Miramistin or Povidone iodine against Escherichia coli, and with Povidone iodine or Prontosan solution against Staphylococcus aureus. Synergism in inhibiting the viability of bacteria within the biofilm formed by Staphylococcus aureus was observed when PG-1 or PG-2 were used in combination with Dequalinium chloride, Povidone iodine and Prontosan solution. In most cases, the combination of protegrins and antiseptics had an additive or synergistic effect on both planktonic forms of bacteria and their biofilms.

Conclusion: The use of combined application of antimicrobial peptides PG-1 or PG-2 with antiseptics can be considered as a practical recommendation to improve the efficacy of medicines, cosmetics or medical devices containing protegrins. Their combined use with antiseptics will show a synergistic or additive effect on the development and destruction of biofilms formed by gram-positive, gram-negative bacteria.

Full Text

Restricted Access

About the authors

Elizaveta V. Vladimirova

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-6576-9844

Researcher at the Laboratory of Design and Synthesis of Biologically Active Peptides

Russian Federation, St. Petersburg

Maria S. Sukhareva

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5351-7199

Researcher at the Laboratory of Design and Synthesis of Biologically Active Peptides

Russian Federation, St. Petersburg

Natalia I. Tapilskaya

D.O. Ott Research Institute of Obstetrics, Gynecology and Reproduction

Email: oshamova@yandex.ru
ORCID iD: 0000-0001-5309-0087

Dr. Med. Sci., Professor, Leading Researcher

Russian Federation, St. Petersburg

Aleksey S. Komlev

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0001-9111-0755

Researcher at the Laboratory of Design and Synthesis of Biologically Active Peptides

Russian Federation, St. Petersburg

Nikolay A. Klimov

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5243-8085

PhD, Leading Researcher at the Laboratory of Design and Synthesis of Biologically Active Peptides

Russian Federation, St. Petersburg

Dmitriy S. Orlov

Institute of Experimental Medicine

Email: oshamova@yandex.ru
ORCID iD: 0000-0003-2925-885X

PhD, Associate Professor, Head of the Laboratory of Design and Synthesis of Biologically Active Peptides

Russian Federation, St. Petersburg

Olga V. Shamova

Institute of Experimental Medicine

Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801

Dr. Bio. Sci., Corresponding Member of RAS, Head of the Laboratory of Immunopathophysiology, Institute of Experimental Medicine

Russian Federation, St. Petersburg

Alexandr A. Yakovlev

Biotechfarm LLC

Email: oshamova@yandex.ru
ORCID iD: 0009-0000-3062-2159

Director for Medical Research

Russian Federation, Moscow

References

  1. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Available at: https://www.who.int/publications/i/item/9789240093461
  2. Van Acker H., Van Dijck P., Coenye T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 2014; 22(6): 326-33. https://dx.doi.org/10.1016/ j.tim.2014.02.001
  3. Jeong G.J., Khan F., Tabassum N., Cho K.J., Kim Y.M. Strategies for controlling polymicrobial biofilms: A focus on antibiofilm agents. Int. J. Antimicrob. Agents. 2024; 64(2): 107243. https://dx.doi.org/10.1016/j.ijantimicag.2024.107243
  4. Juszczuk-Kubiak E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on quorum sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. Int. J. Mol. Sci. 2024; 25(5): 2655. https://dx.doi.org/10.3390/ijms25052655
  5. Zhang Q.Y., Yan Z.B., Meng Y.M., Hong X.Y., Shao G., Ma J.J. et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil. Med. Res. 2021; 8(1): 48. https://dx.doi.org/10.1186/ s40779-021-00343-2
  6. Huan Y., Kong Q., Mou H., Yi H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 2020; 11: 582779. https://dx.doi.org/10.3389/fmicb.2020.582779
  7. https://dramp.cpu-bioinfor.org/
  8. https://aps.unmc.edu/
  9. Ma T., Liu Y., Yu B., Sun X., Yao H., Hao C. et al. DRAMP 4.0: an open-access data repository dedicated to the clinical translation of antimicrobial peptides. Nucleic Acids Res. 2025; 53(D1): D403-D410. https://dx.doi.org/10.1093/nar/gkae1046
  10. Di Somma A., Moretta A., Canè C., Cirillo A., Duilio A. Antimicrobial and antibiofilm peptides. Biomolecules. 2020; 10(4): 652. https://dx.doi.org/ 10.3390/biom10040652
  11. Duong L., Gross S.P., Siryaporn A. Developing antimicrobial synergy with AMPs. Front. Med. Technol. 2021; 3: 640981. https://dx.doi.org/10.3389/fmedt.2021.640981
  12. Gonçalves R.M., Monges B.E.D., Oshiro K.G.N., Cândido E.S., Pimentel J.P.F., Franco O.L. et al. Advantages and challenges of using antimicrobial peptides in synergism with antibiotics for treating multidrug-resistant bacteria. ACS Infect. Dis. 2025; 11(2): 323-34. https://dx.doi.org/10.1021/ acsinfecdis.4c00702
  13. Zharkova M.S., Komlev A.S., Filatenkova T.A., Sukhareva M.S., Vladimirova E.V., Trulioff A.S. et al. Combined use of antimicrobial peptides with antiseptics against multidrug-resistant bacteria: Pros and Cons. Pharmaceutics. 2023; 15(1): 291. https://dx.doi.org/10.3390/pharmaceutics15010291
  14. Kokryakov V.N., Harwig S.S., Panyutich E.A., Shevchenko A.A., Aleshina G.M., Shamova O.V. et al. Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993; 327(2): 231-6. https://dx.doi.org/10.1016/ 0014-5793(93)80175-t
  15. Lazaridis T., He Y., Prieto L. Membrane interactions and pore formation by the antimicrobial peptide protegrin. Biophys. J. 2013; 104(3): 633-42. https://dx.doi.org/10.1016/j.bpj.2012.12.038
  16. Артамонов А.Ю., Шамова О.В., Кокряков В.Н., Миргородская О.А., Орлов Д.С. Мембраноселективные структурные варианты протегрина-1. Вестник Санкт-Петербургского университета. Серия 3. Биология. 2008; 3: 80-6. [Artamonov A.Yu., Shamova O.V., Kokryakov V.N., Mirgorodskaya O.A., Orlov D.S. Membranoselective structural variants of protegrin-1. Bulletin of St. Petersburg University. Series 3. Biology. 2008; 3: 80-6. (in Russian)].
  17. Wiegand I., Hilpert K., Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008; 3(2): 163-75. https://dx.doi.org/10.1038/nprot.2007.521
  18. Dydak K., Junka A., Dydak A., Brożyna M., Paleczny J., Fijalkowski K. et al. In vitro efficacy of bacterial cellulose dressings chemisorbed with antiseptics against biofilm formed by pathogens isolated from chronic wounds. Intern. J. Mol. Sci. 2021; 22(8): 3996. https://dx.doi.org/10.3390/ ijms22083996
  19. Orhan G., Bayram A., Zer Y., Balci I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 2005; 43(1): 140-3. https://dx.doi.org/10.1128/ JCM.43.1.140-143.2005
  20. Li X., Zuo S., Wang B., Zhang K., Wang Y. Antimicrobial mechanisms and clinical application prospects of antimicrobial peptides. Molecules. 2022; 27(9): 2675. https://dx.doi.org/10.3390/molecules27092675
  21. Wang L., Qu L., Lin S., Yang Q., Zhang X., Jin L. et al. Biological functions and applications of antimicrobial peptides. Curr. Protein Pept. Sci. 2022; 23(4): 226-47. https://dx.doi.org/10.2174/1389203723666220519155942
  22. Haidari H., Melguizo-Rodríguez L., Cowin A.J., Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection. Am. J. Physiol. Cell Physiol. 2023; 324(1): C29-C38. https://dx.doi.org/10.1152/ajpcell.00080.2022
  23. Jan Z., Geethakumari A.M., Biswas K.H., Jithesh P.V. Protegrin-2, a potential inhibitor for targeting SARS-CoV-2 main protease Mpro. Comput. Struct. Biotechnol. J. 2023; 21: 3665-71. https://dx.doi.org/10.1016/ j.csbj.2023.07.020
  24. Soundrarajan N., Somasundaram P., Kim D., Cho H.S., Jeon H., Ahn B. et al. Effective healing of Staphylococcus aureus-infected wounds in pig Cathelicidin Protegrin-1-overexpressing transgenic mice. Int. J. Mol. Sci. 2023; 24(14): 11658. https://dx.doi.org/10.3390/ijms241411658
  25. Osakowicz C., Fletcher L., Caswell J.L., Li J. Protective and anti-inflammatory effects of Protegrin-1 on Citrobacter rodentium intestinal infection in mice. Int. J. Mol. Sci. 2021; 22(17): 9494. https://dx.doi.org/10.3390/ijms22179494
  26. Kollef M., Pittet D., Sanchez Garcia M., Chastre J., Fagon J.Y., Bonten M. et al. A randomized double-blind trial of iseganan in prevention of ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 2006; 173: 91-7. https://dx.doi.org/10.1164/rccm.200504-656OC
  27. Dale G.E., Halabi A., Petersen-Sylla M., Wach A., Zwingelstein C. Pharmacokinetics, tolerability, and safety of murepavadin, a novel antipseudomonal antibiotic, in subjects with mild, moderate, or severe renal function impairment. Antimicrob. Agents Chemother. 2018; 62: e00490-18. https://dx.doi.org/10.1128/AAC.00490-18
  28. Ковальчук Л.В., Ганковская Л.В., Аведова Т.А., Брико Н.И., Ещина А.С., Дмитриева Н.Ф. Бактерицидное действие комплекса природных цитокинов на Streptococcus pyogenes in vitro. Журнал микробиологии, эпидемиологии и иммунобиологии. 2006; 3: 67-71. [Kovalchuk L.V., Gankovskaya L.V., Avedova T.A., Briko N.I., Yeshina A.S., Dmitrieva N.F. Bactericidal action of a complex of natural cytokines on Streptococcus pyogenes in vitro. Journal of Microbiology, Epidemiology and Immunobiology. 2006; 3: 67-71. (in Russian)].
  29. Юшкова Т.А., Слабинская Е.В., Яковлев А.А. Клиническая фармакология Суперлимфа при заболеваниях урогенитального тракта через призму уровней реализации его эффектов. Эффективная фармакотерапия. 2023; 19(37): 44-53. [Yushkova T.A., Slabinskaya E.V., Yakovlev A.A. Clinical pharmacology of Superlymph in diseases of the urogenital tract through the prism of the levels of implementation of its effects. Effective Pharmacotherapy. 2023; 19(37): 44-53. (in Russian)]. https://dx.doi.org/10.33978/ 2307-3586-2023-19-37-44-53
  30. Свирщевская Е.В., Матушевская Е.В. Роль цитокинов в патогенезе и лечении герпесвирусных заболеваний. Клиническая дерматология и венерология. 2018; 17(1): 115-20. [Svirshchevskaia E.V., Matushevskaia E.V. The role of cytokines in the pathogenesis and treatment of herpesvirus diseases. Russian Journal of Clinical Dermatology and Venereology. 2018; 17(1): 115-20. (in Russian]. https://dx.doi.org/10.17116/ klinderma2018171115-120
  31. Kasiri M.M., Beer L., Nemec L., Gruber F., Pietkiewicz S., Haider T. et al. Dying blood mononuclear cell secretome exerts antimicrobial activity. Eur. J. Clin. Invest. 2016; 46(10): 853-63. https://dx.doi.org/10.1111/ eci.12667
  32. Овчинников А.Ю., Егиян С.С., Акопян Л.В. Топическая цитокинотерапия при хроническом тонзиллите. Эффективная фармакотерапия. 2022; 18(28): 26-31. [Ovchinnikov A.Yu., Egiyan S.S., Akopyan L.V. Topical cytokine therapy for chronic tonsillitis. Effective Pharmacotherapy. 2022; 18(28): 26-31. (in Russian)]. https://dx.doi.org/10.33978/ 2307-3586-2022-18-28-26-31
  33. Лысов А.Д., Постников М.А., Чигарина С.Е., Алешева М.Д., Лысова В.А. Применение препарата Суперлимф в периимплантатной области после вестибулопластики. Клиническая стоматология. 2024; 27(1): 40-8. [Lysov A.D., Postnikov M.A., Chigarina S.E., Alesheva M.D., Lysova V.A. Use of the drug Superlymph in the peri-implant area after vestibuloplasty. Clinical Dentistry. 2024; 27(1): 40-8 (in Russian)]. https://dx.doi.org/ 10.37988/1811-153X_2024_1_4
  34. Абрицова М.В., Торчуа Н.Р. Оценка эффективности крема-бальзама ланолинового в лечении ран анального канала: пилотное исследование. Амбулаторная хирургия. 2025; 22(1): 176-84. [Abritsova M.V., Torchua N.R. Evaluation of the efficacy of lanolin- based cream-balm in the treatment of anal canal wounds: a pilot study. Ambulatornaya Khirurgiya. 2025; 22(1): 176-84. (in Russian)]. https://doi.org/10.21518/akh2025-020
  35. Тихомирова Е.В., Балан В.Е., Кручинина Е.В., Орлова С.А., Титченко Ю.П., Балан П.В., Жильцова А.А., Яцюк В.Я. Длительность безрецидивного периода после применения препарата Ацилакт Дуо в качестве второй линии терапии при бактериальном вагинозе. Эффективная фармакотерапия. 2023; 19(44): 10-6. [Tikhomirova Ye.V., Balan V.Ye., Kruchinina Ye.V., Orlova S.A., Titchenko Yu.P., Balan P.V., Zhiltsova A.A., Yatsyuk V.Ya. The duration of the relapse-free period after the use of the drug Acilact Duo as a second line of therapy for bacterial vaginosis. Effective pharmacotherapy. 2023; 19(44): 10-6. (in Russian)]. https://dx.doi.org/10.33978/2307-3586-2023-19-44-10-16
  36. Тевлин К.П., Тевлина Е.В., Ханалиев Б.В., Судиловская В.В., Ганковская Л.В., Насаева Е.Д., Хасанова Е.М. Новые перспективы консервативного лечения хронического рецидивирующего цистита у женщин: опыт применения лекарственного препарата Суперлимф®. Урология. 2024; 4: 48-57. [Tevlin K.P., Tevlina E.V., Khanaliev B.V., Sudilovskaya V.V., Gankovskaya L.V., Nasaeva E.D., Khasanova E.M. New prospects for conservative treatment of chronic recurrent cystitis in women: experience with the use of the drug Superlymph®. Urologiia. 2024; (4): 48-57 (in Russian)]. https://dx.doi.org/10.18565/urology.2024.4.48-57
  37. Овчинников Р.И., Попова А.Ю., Вторушина В.В., Мурадян А.А., Гамидов С.И. Применение комплекса природных противомикробных пептидов и цитокинов при мужском бесплодии хроническом простатите. Урология. 2022; 2: 43-53. [Ovchinnikov R.I., Popova A.Yu., Vtorushina V.V., Muradyan A.A., Gamidov S.I. The use of a complex of natural antimicrobial peptides and cytokines for treatment of male infertility and chronic prostatitis. Urologiia 2022; (2): 43-53 (in Russian)]. https: //dx.doi.org/10.18565/ urology.2022.2.43-53
  38. Толибова Г.Х., Траль Т.Г., Кахиани М.И. Возможности коррекции рецепторного профиля эндометрия при хроническом эндометрите. Акушерство и гинекология. 2024; 10: 121-8. [Tolibova G.Kh., Tral T.G., Kakhiani M.I. Possibilities of correction of the endometrial receptor profile in chronic endometritis. Obstetrics and Gynecology. 2024; (10): 121-8 (in Russian)]. https://dx.doi.org/10.18565/aig.2024.244

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Drawing. The combined effect of PG-1 and antiseptics on biofilm formation by Staphylococcus aureus. Leica microscope, lens *40, bacteria cultured in slides for microscopy

Download (352KB)

Copyright (c) 2025 Bionika Media