Роль тромбоцитарно-моноцитарных комплексов периферической крови в репродуктивных процессах и методы их исследования
- Авторы: Селютин А.В.1, Чепанов С.В.1, Павлов О.В.1, Корнюшина Е.А.1, Сельков С.А.1
-
Учреждения:
- ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
- Выпуск: № 8 (2021)
- Страницы: 50-59
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0300-9092/article/view/249358
- DOI: https://doi.org/10.18565/aig.2021.8.50-58
- ID: 249358
Цитировать
Полный текст



Аннотация
Ключевые слова
Полный текст

Об авторах
Александр Васильевич Селютин
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Email: a_selutin@yahoo.com
к.б.н., с.н.с. группы протеомной иммунорегуляции отдела иммунологии и межклеточных взаимодействий Санкт-Петербург, Российская Федерация
Сергей Владимирович Чепанов
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Email: chepanovsv@gmail.com
к.м.н., с.н.с. группы протеомной иммунорегуляции отдела иммунологии и межклеточных взаимодействий Санкт-Петербург, Российская Федерация
Олег Владимирович Павлов
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Email: ovpavlov@hotmail.com
д.б.н., в.н.с. отдела иммунологии и межклеточных взаимодействий Санкт-Петербург, Российская Федерация
Екатерина Амировна Корнюшина
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Email: hapacheva@yandex.ru
к.м.н., врач акушер-гинеколог отделения патологии беременности, с.н.с. Санкт-Петербург, Российская Федерация
Сергей Алексеевич Сельков
ФГБНУ «Научно-исследовательский институт акушерства, гинекологии и репродуктологии имени Д.О. Отта»
Email: selkovsa@mail.ru
Заслуженный деятель науки РФ, профессор, д.м.н., руководитель отдела иммунологии и межклеточных взаимодействий Санкт-Петербург, Российская Федерация
Список литературы
- Kral J.B., Schrottmaier W.C., Salzmann M., Assinger A. Platelet interaction with innate immune cells. Transfus. Med. Hemother. 2016; 43(2): 78-88. https://dx.doi.org/10.1159/000444807.
- Bizzozero G. Über einen neuen Forrnbestandteil des Blutes und dessen Rolle bei der Thrombose und Blutgerinnung. Arch. Pathol. Anat. Physiol. Klin. Med. 1882; 90: 261-332.
- Милованов А.П. Цитотрофобластическая инвазия - важнейший механизм плацентации и прогрессии беременности. Архив патологии. 2019; 81(4): 5-10. [Milovanov A.P. Cytotrophoblastic invasion is the most important mechanism of placentation and pregnancy progression. Arkhiv patologii/ Archive of Pathology. 2019; 81(4): 5-10. (in Russian)]. https://dx.doi.org/10.17116/patol2019810415.
- Roberts V.H.J., Morgan T.K., Bednarek P., Morita M., Burton G.J., Lo J.O., Frias A.E. Early first trimester uteroplacental flow and the progressive disintegration of spiral artery plugs: new insights from contrast-enhanced ultrasound and tissue histopathology. Hum. Reprod. 2017; 32(12): 2382-93. https://dx.doi.org/10.1093/humrep/dex301.
- Moser G., Guettler J., Forstner D., Gauster M. Maternal platelets - Ffiend or foe of the human placenta. Int. J. Mol. Sci. 2019; 20(22): 5639. https://dx.doi.org/10.3390/ijms20225639.
- Bos-Mikich A., Ferreira M.O., de Oliveira R., Frantz N. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J. Assist. Reprod. Genet. 2019; 36(4): 613-20. https://dx.doi.org/10.1007/s10815-018-1386-z.
- Sato Y., Fujiwara H., Konishi I. Mechanism of maternal vascular remodeling during human pregnancy. Reprod. Med. Biol. 2012; 11(1): 27-36. https://dx.doi.org/10.1007/s12522-011-0102-9.
- Kohli S., Ranjan S., Hoffmann J., Kashif M., Daniel E.A., Al-Dabet M.M. et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood. 2016; 128(17): 2153-64. https://dx.doi.org/10.1182/blood-2016-03-705434.
- Kohli S., Isermann B. Placental hemostasis and sterile inflammation: new insights into gestational vascular disease. Thromb. Res. 2017; 151(Suppl. 1): S30-3. https://dx.doi.org/10.1016/S0049-3848(17)30063-4.
- Rayes J., Bourne J.H., Brill A., Watson S.P. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res. Pract. Thromb. Haemost. 2019; 4(1): 23-35. https://dx.doi.org/10.1002/rth2.12266.
- Martmez-Sanchez S.M., Minguela A., Prieto-Merino D., Zafrilla-Rentero M.P., Abellän-Alemän J., Montoro-Garcia S. The effect of regular intake of dry-cured ham rich in bioactive peptides on inflammation, platelet and monocyte activation markers in humans. Nutrients. 2017; 9(4): 321. https://dxdoi.org/10.3390/nu9040321.
- Lebas H., Yahiaoui K., Martos R., Boulaftali Y. Platelets are at the nexus of vascular diseases. Front. Cardiovasc. Med. 2019; 6: 132. https://dx.doi.org/10.3389/fcvm.2019.00132.
- Kaminska J., Lisowska A., Koper-Lenkiewicz O.M., Mikhasz P., Grubczak K., Moniuszko M. et al. Differences in monocyte subsets and monocyte-platelet aggregates in acute myocardial infarction-preliminary results. Am. J. Med. Sci. 2019; 357(5): 421-34. https://dx.doi.org/10.1016/j.amjms.2019.02.010.
- Gianazza E., Brioschi M., Baetta R., Mallia A., Banfi C., Tremoli E. Platelets in healthy and disease states: from biomarkers discovery to drug targets identification by proteomics. Int. J. Mol. Sci. 2020; 21(12): 4541. https://dx.doi.org/10.3390/ijms21124541.
- Santilli F., Simeone P., Liani R. The role of platelets in diabetes mellitus. In: Michelson A., Cattaneo M., Frelinger A., Newman P., eds. Platelets. 4th ed. Academic Press; 2019: 469-503. https://dx.doi.org/10.1016/B978-0-12-813456-6.00027-8.
- Dixon D.A., Tolley N.D., Bemis-Standoli K., Martinez M.L., Weyrich A.S., Morrow J.D. et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J. Clin. Invest. 2006; 116(10): 2727-38. https://dx.doi.org/10.1172/JCI27209.
- Luppi P., Deloia J.A. Monocytes of preeclamptic women spontaneously synthesize proinflammatory cytokines. Clin. Immunol. 2006; 118(2-3): 268-75. https://dx.doi.org/10.1016/j.clim.2005.11.001.
- Macey M.G., Bevan S., Alam S., Verghese L., Agrawal S., Beski S. et al. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb. Res. 2010; 125(3): e76-81. https://dx.doi.org/10.1016/j.thromres.2009.09.013.
- Major H.D., Campbell R.A., Silver R.M., Branch D.W., Weyrich A.S. Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia. Am. J. Obstet. Gynecol. 2014; 210(6): 547. e1-7. https://dx.doi.org/10.1016/j.ajog.2014.01.024.
- Xu X.R., Zhang D., Oswald B.E., Carrim N., Wang X., Hou Y. et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016; 53(6): 409-30. https://dx.doi.org/10.1080/10408363.2016.1200008.
- Schultze M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch. Mikr. Anat. 1865; 1: 1-42.
- Gyulkhandanyan A.V., Mutlu A., Freedman J., Leytin V. Selective triggering of platelet apoptosis, platelet activation or both. Br. J. Haematol. 2013; 161(2): 245-54. https://dx.doi.org/10.1111/bjh.12237.
- Cimmino G., Golino P. Platelet biology and receptor pathways. J. Cardiovasc. Transl. Res. 2013; 6(3): 299-309. https://dx.doi.org/10.1007/s12265-012-9445-9.
- Herter J.M., Rossaint J., Zarbock A. Platelets in inflammation and immunity. J. Thromb. Haemost. 2014; 12(11): 1764-75. https://dx.doi.org/10.1111/jth.12730.
- Ambrosio A.L., Di Pietro S.M. Mechanism of platelet а-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv. 2019; 3(17): 2617-26. https://dx.doi.org/10.1182/bloodadvances.2018028969.
- Sharda A., Flaumenhaft R. The life cycle of platelet granules. F1000Research. 2018; 7: 236. https://dx.doi.org/10.12688/f1000research.13283.1.
- McGivern T.J., Molloy K., Bahar M., McElvaney N.G., Moran N., Kerrigan S.W. A platelet dense-granule secretion defect may lead to a muted inflammatory cell mobilization response in cystic fibrosis patients. J. Thromb. Haemost. 2013; 11(10): 1939-42. https://dx.doi.org/10.1111/jth.12377.
- Maurer S., Kopp H.G., Salih H.R., Kropp K.N. Modulation of immune responses by platelet-derived ADAM10. Front. Immunol. 2020; 11: 44. https://dx.doi.org/10.3389/fimmu.2020.00044.
- van Furth R., Cohn Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968; 128: 415-35.
- Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N. et al. Nomenclature of monocytes and dendritic cells in blood. Blood. 2010; 116(16): e74-80. https://dx.doi.org/10.1182/blood-2010-02-258558.
- Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol. 2020; 92(1): e12883. https://dx.doi.org/10.1111/sji.12883.
- Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A. et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med. 2017; 214(7): 1913-23. https://dx.doi.org/10.1084/jem.20170355.
- Burkhart J.M., Gambaryan S., Watson S.P., Jurk K., Walter U., Sickmann A. et al. What can proteomics tell us about platelets? Circ. Res. 2014; 114(7): 1204-19. https://dx.doi.org/10.1161/CIRCRESAHA.114.301598.
- Finsterbusch M., Schrottmaier W.C., Kral-Pointner J.B., Salzmann M., Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets. 2018; 29(7): 677-85. https://dx.doi.org/10.1080/09537104.2018.1430358.
- Lausen M., Poulsen T.B.G., Christiansen G., Kastaniegaard K., Stensballe A., Birkelund S. Proteomic analysis of lipopolysaccharide activated human monocytes. Mol. Immunol. 2018; 103: 257-69. https://dx.doi.org/10.1016/j.molimm.2018.09.016.
- van Gils J.M., Zwaginga J.J., Hordijk P.L. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J. Leukoc. Biol. 2009; 85(2): 195-204. https://dx.doi.org/10.1189/jlb.0708400.
- Dopheide J.F., Rubrech J., Trumpp A., Geissler P., Zeller G.C., Bock K. et al. Leukocyte-platelet aggregates - a phenotypic characterization of different stages of peripheral arterial disease. Platelets. 2016; 27(7): 658-67. https://dx.doi.org/10.3109/09537104.2016.1153619.
- Dziedzic A., Miller E., Bijak M., Przyslo L., Saluk-Bijak J. Increased pro-thrombotic platelet activity associated with thrombin/PAR1-dependent pathway disorder in patients with secondary progressive multiple sclerosis. Int. J. Mol. Sci. 2020; 21(20): 7722. https://dx.doi.org/10.3390/ijms21207722.
- Trotta A., Veläsquez L.N., Milillo M.A., Delpino M.V., Rodriguez A.M., Landoni V.I. et al. Platelets promote Brucella abortus monocyte invasion by establishing complexes with monocytes. Front. Immunol. 2018; 9: 1000. https://dx.doi.org/10.3389/fimmu.2018.0100041.
- Gerrits A.J., Frelinger A.L., Michelson A.D. Whole blood analysis of leukocyte-platelet aggregates. Curr. Protoc. Cytom. 2016; 78: 6.15.1-6.15.10. https://dx.doi.org/10.1002/cpcy.8.
- Granja T., Schad J., Schüssel P., Fischer C., Häberle H., Rosenberger P. et al. Using six-colour flow cytometry to analyse the activation and interaction of platelets and leukocytes-a new assay suitable for bench and bedside conditions. Thromb. Res. 2015; 136(4): 786-96. https://dx.doi.org/10.1016/j.thromres.2015.07.009.
- Thomas G.D., Hamers A.A.J., Nakao C., Marcovecchio P., Taylor A.M., McSkimming C. et al. Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. Arterioscler. Thromb. Vasc. Biol. 2017; 37(8): 1548-58. https://dx.doi.org/10.1161/ATVBAHA.117.309145.
- Lau A.K.S., Shum H.C., Wong K.K.Y., Tsia K. Optofluidic time-stretch imaging - an emerging tool for high-throughput imaging flow cytometry. Lab. Chip. 2016; 16(10): 1743-56. https://dx.doi.org/10.1039/c5lc01458a.
- Jung B.K., Cho C.H., Moon K.C., Hur D.S., Yoon J.-A., Yoon S.-Y. Detection of platelet-monocyte aggregates by the ADAM® image cytometer. Int. J. Med. Sci. 2014; 11(12): 1228-33. https://dx.doi.org/10.7150/ijms.10008.
- Hui H.Y., Fuller K., Erber W., Linden M.D. Measurement of monocyte-platelet aggregates by imaging flow cytometry. Cytometry Part A. 2015; 87(3): 273-8. https://dx.doi.org/10.1002/cyto.a.22587.
- Feng C., Chen Q., Fan M., Guo J., Liu Y., Ji T., Zhu J., Zhao X. Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, potentially enhancing foam cell formation. Ann. Transl. Med. 2019; 7(18): 477. https://dx.doi.org/10.21037/atm.2019.08.06.
Дополнительные файлы
