Changes in placental growth factor levels in patients with different pregnancy complications

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Objective: To study changes in placental growth factor (PlGF) levels at 11–14 weeks of gestation and before delivery (at 37–40 weeks) in relation to various pregnancy complications, including gestational diabetes mellitus, fetal macrosomia, premature birth, and abnormal placentation.

Materials and methods: The study included 3,274 pregnant women who underwent first-trimester screening at V.I. Kulakov NMRC for OG&P, Ministry of Health of Russia. Serum PlGF levels were measured at various gestational ages. The Mann–Whitney U test and χ² Pearson test were used for the analysis, with statistical significance set at p<0.05.

Results: No statistical differences were found in PlGF levels at 11-14 weeks between the groups, in contrast to the PAPP-A levels. However, there were distinct patterns of PlGF level changes associated with various pregnancy complications. Gestational diabetes was characterized by a decline in PlGF levels as pregnancy progressed, with the most pronounced reduction observed in patients receiving insulin therapy (p<0.001). In contrast, elevated PlGF levels were detected in the third trimester in cases of fetal macrosomia (p=0,004). In cases of abnormal placentation (particularly placenta previa), a significant increase in PlGF level was detected prior to delivery (p=0,01). In cases of preterm birth, the changes in PlGF levels did not reach statistical significance.

Conclusion: The findings of the study highlight the potential usefulness of evaluating PAPP-A and PlGF levels across various stages of pregnancy to assist in risk stratification for complicated pregnancies. Lower PAPP-A levels during the first trimester are linked to an increased risk of gestational diabetes mellitus (GDM) and preterm birth, while PlGF levels in the third trimester area are associated with the severity of metabolic and placental complications.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Zulfia Khodzhaeva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Хат алмасуға жауапты Автор.
Email: zkhodjaeva@mail.ru
ORCID iD: 0000-0001-8159-3714

Dr. Med. Sci., Professor, Deputy Director for Research of the Institute of Obstetrics

Ресей, Moscow

Kamilla Muminova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: kamika91@mail.ru
ORCID iD: 0000-0003-2708-4366

PhD, Junior Researcher at the 1st Department of Pregnancy Pathology

Ресей, Moscow

Alina Poluektova

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: a_poluektova@oparina4.ru
ORCID iD: 0009-0003-7892-7017

PhD student, Specialist, Laboratory of Clinical Proteomics

Ресей, Moscow

Anna Avdeeva

Lomonosov Moscow State University

Email: a_avdeeva@oparina4.ru
ORCID iD: 0009-0000-2225-2469

Student, Faculty of Fundamental Medicine, Moscow Scientific and Educational Institute

Ресей, Moscow

Alisa Tokareva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: a_tokareva@oparina4.ru
ORCID iD: 0000-0001-5918-9045

Specialist, Laboratory of Clinical Proteomics

Ресей, Moscow

Evgeny Kukaev

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation; V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics of the Russian Academy of Sciences

Email: e_kukaev@oparina4.ru
ORCID iD: 0000-0002-8397-3574

PhD in Physics and Mathematics, Senior Researcher at the Laboratory of Clinical Proteomics

Ресей, Moscow; Moscow

Igor Baranov

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: i_baranov@oparina4.ru
ORCID iD: 0000-0002-9813-2823

Dr. Med. Sci., Professor, Head of the Department of Scientific and Educational Programs

Ресей, Moscow

Natalia Starodubtseva

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of the Russian Federation

Email: n_starodubtseva@oparina4.ru
ORCID iD: 0000-0001-6650-5915

PhD (Bio), Head of the Laboratory of Clinical Proteomics

Ресей, Moscow

Әдебиет тізімі

  1. Hayes Ryan D., McCarthy F.P., O’Donoghue K., Kenny L.C. Placental growth factor: A review of literature and future applications. Pregnancy Hypertens. 2018; 14: 260-4. https://dx.doi.org/10.1016/j.preghy.2018.03.003
  2. Yang W., Jiang Y., Wang Y., Zhang T., Liu Q., Wang C. et al. Placental growth factor in beta cells plays an essential role in gestational beta-cell growth. BMJ Open Diabetes Res. Care. 2020; 8(1): e000921. https://dx.doi.org/10.1136/bmjdrc-2019-000921
  3. Tao J., Xia L.Z., Chen J.J., Zeng J.F., Meng J., Wu S.Y. et al. High glucose condition inhibits trophoblast proliferation, migration and invasion by downregulating placental growth factor expression. J. Obstet. Gynaecol. Res. 2020; 46(9): 1690-701. https://dx.doi.org/10.1111/jog.14341
  4. Loegl J., Nussbaumer E., Cvitic S., Huppertz B., Desoye G., Hiden U. GDM alters paracrine regulation of feto-placental angiogenesis via the trophoblast. Lab. Investig. 2017; 97(4): 409-18. https://dx.doi.org/10.1038/labinvest.2016.149
  5. Tao J., Rao Y., Wang J., Tan S., Zhao J., Cao Z. et al. Placental growth factor alleviates hyperglycemia-induced trophoblast pyroptosis by regulating mitophagy. J. Obstet. Gynaecol. Res. 2024; 50(10): 1813-29. https:// dx.doi.org/10.1111/jog.16050
  6. Tenenbaum-Gavish K., Sharabi-Nov A., Binyamin D., Møller H.J., Danon D., Rothman L. et al. First trimester biomarkers for prediction of gestational diabetes mellitus. Placenta. 2020; 101: 80-9. https://dx.doi.org/10.1016/ j.placenta.2020.08.020
  7. Yanachkova V., Staynova R., Naseva E., Kamenov Z. The role of placental growth factor in the prediction of carbohydrate and thyroid disorders during pregnancy. Medicina (Kaunas). 2022; 58(2): 232. https://dx.doi.org/10.3390/medicina58020232
  8. Lu Y.T., Chen C.P., Sun F.J., Chen Y.Y., Wang L.K., Chen C.Y. Associations between first-trimester screening biomarkers and maternal characteristics with gestational diabetes mellitus in Chinese women. Front. Endocrinol. (Lausanne). 2024; 15: 1383706. https://dx.doi.org/10.3389/fendo.2024.1383706
  9. Gorkem U., Togrul C., Arslan E. Relationship between elevated serum level of placental growth factor and status of gestational diabetes mellitus. J. Matern. Fetal Neonatal Med. 2020; 33(24): 4159-63. https://dx.doi.org/10.1080/ 14767058.2019.1598361
  10. Alqudah A., Eastwood K.A., Jerotic D., Todd N., Hoch D., McNally R. et al. FKBPL and SIRT-1 are downregulated by diabetes in pregnancy impacting on angiogenesis and endothelial function. Front. Endocrinol. (Lausanne). 2021; 12: 650328. https://dx.doi.org/10.3389/fendo.2021.650328
  11. Chatzakis C., Papavasiliou D., Mansukhani T., Nicolaides K.H., Charakida M. Maternal vascular-placental axis in the third trimester in women with gestational diabetes mellitus, hypertensive disorders, and unaffected pregnancies. Am. J. Obstet. Gynecol. 2025; 232(5): 489.e1-489.e11. https://dx.doi.org/10.1016/ j.ajog.2024.08.045
  12. James-Todd T., Cohen A., Wenger J., Brown F. Time-specific placental growth factor (PlGF) across pregnancy and infant birth weight in women with preexisting diabetes. Hypertens. Pregnancy. 2016; 35(3): 436-46. https:// dx.doi.org/10.3109/10641955.2016.1172085
  13. Wang F., Zhang L., Zhang F., Wang J., Wang Y., Man D. First trimester serum PIGF is associated with placenta accreta. Placenta. 2020; 101: 39-44. https://dx.doi.org/10.1016/j.placenta.2020.08.023
  14. Zhang T., Wang S. Potential serum biomarkers in prenatal diagnosis of placenta accreta spectrum. Front. Med. (Lausanne). 2022; 9: 860186. https:// dx.doi.org/10.3389/fmed.2022.860186
  15. Zhang F., Gu M., Chen P., Wan S., Zhou Q., Lu Y. et al. Distinguishing placenta accreta from placenta previa via maternal plasma levels of sFlt-1 and PLGF and the sFlt-1/PLGF ratio. Placenta. 2022; 124: 48-54. https:// dx.doi.org/10.1016/j.placenta.2022.05.009
  16. Jauniaux E., Ayres-de-Campos D., Langhoff-Roos J., Fox K.A., Collins S.; FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel. FIGO classification for the clinical diagnosis of placenta accreta spectrum disorders. Int. J. Gynaecol. Obstet. 2019; 146(1): 20-4. https://dx.doi.org/10.1002/ijgo.12761
  17. Arakaza A., Liu X., Zhu J., Zou L. Assessment of serum levels and placental bed tissue expression of IGF-1, bFGF, and PLGF in patients with placenta previa complicated with placenta accreta spectrum disorders. J. Matern. Fetal Neonatal Med. 2024; 37(1): 2305264. https://dx.doi.org/10.1080/ 14767058.2024.2305264
  18. Gao W., Yang L., Shi B. Mapping themes trends and knowledge structure of trophoblastic invasion, a bibliometric analysis from 2012-2021. J. Reprod. Immunol. 2021; 146: 103347. https://dx.doi.org/10.1016/j.jri.2021.103347
  19. Gladstone R.A., Ahmed S., Huszti E., McLaughlin K., Snelgrove J.W., Taher J. et al. Midpregnancy placental growth factor screening and early preterm birth. JAMA Netw. Open. 2024; 7(11): e2444454. https://dx.doi.org/10.1001/jamanetworkopen.2024.44454
  20. Conover C.A., Bale L.K., Overgaard M.T., Johnstone E.W., Laursen U.H., Füchtbauer E.M. et al. Metalloproteinase pregnancy-associated plasma protein A is a critical growth regulatory factor during fetal development. Development. 2004; 131(5): 1187-94. https://dx.doi.org/10.1242/ dev.00997
  21. McLaughlin K., Snelgrove J.W., Audette M.C., Syed A., Hobson S.R., Windrim R.C. et al. PlGF (Placental Growth Factor) testing in clinical practice: evidence from a Canadian Tertiary Maternity Referral Center. Hypertension. 2021; 77(6): 2057-65. https://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17047
  22. Sherrell H., Dunn L., Clifton V., Kumar S. Systematic review of maternal Placental Growth Factor levels in late pregnancy as a predictor of adverse intrapartum and perinatal outcomes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2018; 225: 26-34. https://dx.doi.org/10.1016/j.ejogrb.2018.03.059
  23. Bowe S., Mitlid-Mork B., Staff A.C., Sugulle M. PlGF and sFlt-1, reduced fetal movements and adverse delivery outcome of a likely placental cause: A real world prospective observational study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2025; 307: 34-42. https://dx.doi.org/10.1016/j.ejogrb.2025.01.029
  24. Monari F., Menichini D., Spano’ Bascio L., Grandi G., Banchelli F., Neri I. et al. A first trimester prediction model for large for gestational age infants: a preliminary study. BMC Pregnancy Childbirth. 2021; 21(1): 654. https:// dx.doi.org/10.1186/s12884-021-04127-3
  25. Chiu C.P.H., Feng Q., Chaemsaithong P., Sahota D.S., Lau Y.Y., Yeung Y.K. et al. Prediction of spontaneous preterm birth and preterm prelabor rupture of membranes using maternal factors, obstetric history and biomarkers of placental function at 11-13 weeks. Ultrasound Obstet. Gynecol. 2022; 60(2): 192-9. https://dx.doi.org/10.1002/uog.24917
  26. Li Y., Meng Y., Chi Y., Li P., He J. Meta-analysis for the relationship between circulating pregnancy-associated plasma protein A and placenta accreta spectrum. Medicine (Baltimore). 2023; 102(47): e34473. https:// dx.doi.org/10.1097/MD.0000000000034473
  27. Mortaki A., Douligeris A., Panagiotopoulos M., Daskalaki M.A., Pergialiotis V., Antsaklis P. et al. First- and second-trimester aneuploidy screening biomarkers and risk assessment of placenta previa and accreta: a systematic review and meta-analysis. J. Obstet. Gynaecol. Can. 2024; 46(11): 102663. https:// dx.doi.org/10.1016/j.jogc.2024.102663
  28. Kapustin R.V., Kopteeva E.V., Alekseenkova E.N., Tral T.G., Tolibova G.K., Arzhanova O.N. Placental expression of endoglin, placental growth factor, leptin, and hypoxia-inducible factor-1 in diabetic pregnancy and pre-eclampsia. Gynecol. Endocrinol. 2021; 37(sup1): 35-9. https://dx.doi.org/10.1080/ 09513590.2021.2006513
  29. Cui J., Li P., Chen X., Li L., Ouyang L., Meng Z. et al. Study on the relationship and predictive value of first-trimester pregnancy-associated plasma protein-A, maternal factors, and biochemical parameters in gestational diabetes mellitus: a large case-control study in Southern China mothers. Diabetes Metab. Syndr. Obes. 2023; 16: 947-57. https://dx.doi.org/10.2147/DMSO.S398530
  30. Ramezani S., Doulabi M.A., Saqhafi H., Alipoor M. Prediction of gestational diabetes by measuring the levels of pregnancy associated plasma protein-A (PAPP-A) during gestation weeks 11-14. J. Reprod. Infertil. 2020; 21(2): 130-7.
  31. Kantomaa T., Vääräsmäki M., Gissler M., Sairanen M., Nevalainen J. First trimester low maternal serum pregnancy associated plasma protein-A (PAPP-A) as a screening method for adverse pregnancy outcomes. J. Perinat. Med. 2023; 51(4): 500-9. https://dx.doi.org/10.1515/jpm-2022-0241

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bionika Media, 2025