Влияние иммунного статуса на тяжесть течения COVID-19


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Цель. Оценить влияние иммунного статуса больных на тяжесть течения COVID-19. Материалы и методы. В проспективное исследование были включены 63 сотрудника ФГБУ«НМИЦ АГПим. академика В.И. Кулакова» МЗ РФ, заболевшие COVID-19. В зависимости от тяжести заболевания они были стратифицированы на 3 группы: группа 1 - 17 человек с бессимптомной формой болезни, группа 2 - 29 человек с легкой формой болезни, группа 3 - 17 человек со среднетяжелой формой COVID-19. На 3-7-е сутки от начала заболевания производился забор крови из периферической вены и оценка уровня антител IgG к SARS-CoV-2 в сыворотке крови методом иммуноферментного анализа (ИФА) и параметров иммунограммы. Через 20+ дней проводился повторный анализ крови с определением уровня антител IgG к SARS- CoV-2 в сыворотке крови методом ИФА. Результаты. Сотрудники, которые имели более высокий ИМТ, А(П) группу крови, более низкое число лейкоцитов и лимфоцитов, более высокое относительное содержание моноцитов и изменения в иммунограмме в виде более низкого числа CD3+, CD3+CD8+, CD19+, CD19+CD5+ и фагоцитарной активности нейтрофилов, развили более тяжелые формы COVID-19, которые характеризовались выраженной клинической симптоматикой и формированием противовирусного иммунитета в 100% наблюдений. Заключение. Выявленные клинико-лабораторные отличия между различными клиническими формами COVID-19, в том числе параметры иммунограммы, могут быть предикторами развития тяжелых форм инфекции и использоваться в клинической практике для прогноза развития заболевания.

Полный текст

Доступ закрыт

Об авторах

Наталия Витальевна Долгушина

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: n_dolgushina@oparina4.ru
д.м.н., профессор, заместитель директора - руководитель департамента организации научной деятельности

Любовь Валентиновна Кречетова

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: l_krechetova@oparina4.ru
д.м.н., заведующая лабораторией клинической иммунологии

Татьяна Юрьевна Иванец

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: t_ivanets@oparina4.ru
д.м.н., заведующая клинико-диагностической лабораторией

Валентина Валентиновна Вторушина

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: vtorushina@inbox.ru
к.м.н., врач КЛД, врач высшей категории лаборатории клинической иммунологии

Евгения Владимировна Инвияева

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

Email: e_inviyaeva@oparina4.ru
к.б.н., старший научный сотрудник лаборатории клинической иммунологии

Владимир Анатольевич Климов

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

к.м.н., руководитель службы организации медицинской помощи и информационного сервиса

Геннадий Тихонович Сухих

ФГБУ «Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова» Минздрава России

академик РАН, д.м.н., профессор, директор

Список литературы

  1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395(10223): 507-13. https:// dx.doi.org/10.1016/S0140-6736(20)30211-7.
  2. Age, sex, existing conditions of COVID-19. Cases and deaths. Current statistics. Available at: https://www.worldometers.info/coronavirus/coronavirus-age-sex-demographics/
  3. Zhao J., Yang Y., Huang H., Li D., Gu D., Lu X. et al. Relationship between the AB0 blood group and the COVID-19 susceptibility. Clin. Infect. Dis. 2020; ciaa1150. https://dx.doi.org/10.1093/cid/ciaa1150.
  4. Patanavanich R., Glantz S.A. Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob. Res. 2020; 22(9): 1653-6. https://dx.doi. org/10.1093/ntr/ntaa082.
  5. Li G., Fan Y., Lai Y., Han T., Li Z., Zhou P. et al. Coronavirus infections and immune responses. J. Med. Virol. 2020; 92(4): 424-32. https://dx.doi.org/ 10.1002/jmv.25685.
  6. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017; 39(5): 529-39. https://dx.doi.org/10.1007/s00281-017-0629-x.
  7. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 7 (утв. Министерством здравоохранения РФ 3 июня 2020 г.). [Temporary guidelines "Prevention, diagnosis and treatment of new coronavirus infection (COVID-19)". Version 7 (approved by the Ministry of health of the Russian Federation on June 3, 2020) (in Russian)]. https://base.garant.ru/74212510/.
  8. Wu Y., Feng Z, Li P., Yu Q. Relationship between ABO blood group distribution and clinical characteristics in patients with COVID-19. Clin. Chim. Acta. 2020; 509: 220-3. https://dx.doi.org/10.1016/j.cca.2020.06.026.
  9. Cooling L. Blood groups in infection and host susceptibility. Clin. Microbiol. Rev. 2015; 28(3): 801-70. https://dx.doi.org/10.1128/CMR.00109-14.
  10. Lee B., Dickson D.M., DeCamp A.C., Ross Colgate E., Diehl S.A., Uddin M.I. et al. Histo-blood group antigen phenotype determines susceptibility to genotype-specific rotavirus infections and impacts measures of rotavirus vaccine efficacy. J. Infect. Dis. 2018; 217(9): 1399-407. https://dx.doi.org/ 10.1093/infdis/jiy054.
  11. Cheng Y., Cheng G., Chui C.H., Lau F.Y., Chan P.K.S., Ng M.H. et al. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA. 2005; 293(12): 1450-1. https://dx.doi.org/10.1001/jama.293.12.1450-c.
  12. Guillon P., Clement M., Sebille V., Rivain J.-G., Chou C.-F, Ruvoen-Clouet N. et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology. 2008; 18(12): 1085-93. https://dx.doi.org/10.1093/glycob/cwn093.
  13. Yang J., Hu J., Zhu C. Obesity aggravates COVID-19: a systematic review and meta-analysis. J. Med. Virol. 2020; 10.1002/jmv.26237. https://dx.doi.org/ 10.1002/jmv.26237.
  14. Long Q.X., Liu B.Z., Deng H.J., Wu G.C., Deng K., Chen Y-K. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat. Med. 2020; 26(6): 845-8. https://dx.doi.org/10.1038/s41591-020-0897-1.
  15. Deeks J.J., Dinnes J., Takwoingi Y., Davenport C., Spijker R., Taylor-Phillips S. et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 2020; (6): CD013652. https://dx.doi. org/10.1002/14651858.CD013652.
  16. Zhang H., Cao X., Kong M., Mao X., Huang L., He P. et al. Clinical and hematological characteristics of 88 patients with COVID-19. Int. J. Lab. Hematol. 2020; 10.1111/ijlh.13291. https://dx.doi.org/10.1111/ijlh.13291.
  17. Elshazli R.M., Toraih E.A., Elgaml A., El-Mowafy M., El-Mesery M., Amin M.N. et al. Diagnostic and prognostic value of hematological and immunological markers in COVID-19 infection: a meta-analysis of 6320 patients. PLoS One. 2020; 15(8): e0238160. https://dx.doi.org/ 10.1371/journal.pone.0238160.
  18. Ferrari D., Motta A., Strollo M., Banfi G., Locatelli M. Routine blood tests as a potential diagnostic tool for COVID-19. Clin. Chem. Lab. Med. 2020; 58(7): 1095-9. https://dx.doi.org/10.1515/cclm-2020-0398.
  19. Cheng Z., Lu Y., Cao Q., Qin L., Pan Z., Yan F. et al. Clinical features and chest CT manifestations of coronavirus disease 2019 (COVID-19) in a single-center study in Shanghai, China. AJR Am. J. Roentgenol. 2020; 215(1): 121-6. https:// dx.doi.org/10.2214/AJR.20.22959.
  20. Xu B., Fan C.-Y., Wang A.-L., Zou Y.-L., Yu Y.-H., He C. et al. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. J. Infect. 2020; 81(1): e51-e60. https://dx.doi.org/ 10.1016/j.jinf.2020.04.012.
  21. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y. et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020; 71(15): 762-8. https://dx.doi.org/10.1093/cid/ciaa248.
  22. Song J.W., Zhang C., Fan X., Meng F.P., Xu Z., Xia P. et al. Immunological and inflammatory profiles in mild and severe cases of COVID-19. Nat. Commun. 2020; 11(1): 1-10. https://dx.doi.org/10.1038/s41467-020-17240-2.
  23. Merad M., Martin J.C. Author Correction: Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 2020; 20(7): 448. https://dx.doi.org/10.1038/s41577-020-0353-y.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2020

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах