Филогенетическая и онтогенетическая роль плацентарной децидуальной оболочки в становлении и особенностях течения беременности

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В представленном обзоре проблема развития гестационных осложнений представлена в рамках концепции дефектной децидуализации. Обсуждаются основные этапы фило- и онтогенетического становления decidua, а также факторы, оказывающие прямое или опосредованное влияние на сам процесс децидуализации. В рамках обзора проведена систематизация существующих знаний о многогранности функций плацентарной децидуальной оболочки, ее участии в обеспечении маточно-плацентарной гемоциркуляции, в создании иммунопривилегированной и метаболически оптимальной среды на границе систем «decidua-хорион» как залога становления физиологической беременности. Показаны возможности децидуализационной терапии, лабораторного контроля функционального состояния decidua basalis и реализации мер, направленных на снижение частоты преэклампсии, плацентарной недостаточности, замедления роста плода, невынашивания беременности и преждевременных родов.

Заключение: Decidua в аспекте становления физиологической беременности имеет первостепенное значение, являясь ключевым фактором реализации осложнений гестации, как на ранних, так и на поздних ее этапах. Эффективность превентивных мероприятий, направленных на повышение рецептивности эндометрия и полноценную его трансформацию в процессе децидуализации, делает данное направление особенно актуальным для дальнейшего изучения в свете формирующегося во всем мире фертильного кризиса.

Полный текст

Доступ закрыт

Об авторах

Игорь Станиславович Липатов

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Автор, ответственный за переписку.
Email: i.lipatoff2012@yandex.ru
ORCID iD: 0000-0001-7277-7431
SPIN-код: 9625-2947

профессор, д.м.н., профессор кафедры акушерства и гинекологии Института клинической медицины

Россия, Самара

Юрий Владимирович Тезиков

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: yra.75@inbox.ru
ORCID iD: 0000-0002-8946-501X
SPIN-код: 2896-6986

профессор, д.м.н., заведующий кафедрой акушерства и гинекологии Института клинической медицины

Россия, Самара

Ольга Борисовна Калинкина

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: maiorof@mail.ru
ORCID iD: 0000-0002-1828-3008
SPIN-код: 1260-6181

доцент, д.м.н., профессор кафедры акушерства и гинекологии Института клинической медицины

Россия, Самара

Аминат Мурадовна Курбанова

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: aminca.kurbanova@mail.ru
ORCID iD: 0000-0002-5277-0379
SPIN-код: 6299-0501

ассистент кафедры акушерства и гинекологии Института клинической медицины

Россия, Самара

Дмитрий Олегович Тарасов

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: dimatarasov12@gmail.com
ORCID iD: 0009-0008-7381-6226

студент 6 курса Института клинической медицины

Россия, Самара

Елизавета Ивановна Михайлова

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: elizaveta.mikhailova2002@mail.ru
ORCID iD: 0009-0003-1980-2310

студентка 6 курса Института клинической медицины

Россия, Самара

Максим Русланович Дубинский

ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России

Email: dubinskiy.mr1608@mail.ru
ORCID iD: 0009-0004-5463-118X

студент 6 курса Института клинической медицины

Россия, Самара

Список литературы

  1. Diessler M.E., Hernández R., Gomez Castro G., Barbeito C.G. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front. Cell Dev. Biol. 2023; 16(11):1134874. https://dx.doi.org/10.3389/fcell.2023.1134874
  2. Foster C.S.P., Van Dyke J.U., Thompson M.B., Smith N.M.A., Simpfendorfer C.A., Murphy C.R. et al. Different genes are recruited during convergent evolution of pregnancy and the placenta. Mol. Biol. Evol. 2022; 39(4): msac077. https://dx.doi.org/10.1093/molbev/msac077
  3. Li L., Feng T., Zhou W., Liu Y., Li H. miRNAs in decidual NK cells: regulators worthy of attention during pregnancy. Reprod. Biol. Endocrinol. 2021; 19(1): 150. https://dx.doi.org/10.1186/s12958-021-00812-2
  4. Jing T., Shijian Lv., Jieqiong Y., Li H., Li W., Zhang C. Decidualization and related pregnancy complications. Maternal-Fetal Medicine. 2022; 4(1): 24-35. https://dx.doi.org/10.1097/FM9.0000000000000135
  5. Murata H., Tanaka S., Okada H. Immune tolerance of the human decidua. J. Clin. Med. 2021; 10(2): 351. https://dx.doi.org/10.3390/jcm10020351
  6. Sun F., Wang S., Du M. Functional regulation of decidual macrophages duringpregnancy. J. Reprod. Immunol. 2021; 143: 103264. https://dx.doi.org/ 10.1016/j.jri.2020.103264
  7. Zhao H., Wong R.J., Stevenson D.K. The impact of hypoxia in early pregnancy on placental cells. Int. J. Mol. Sci. 2021; 22(18): 9675. https://dx.doi.org/10.3390/ijms22189675
  8. Ning F., Liu H., Lash G.E. The role of decidual macrophages during normal and pathological pregnancy. Am. J. Reprod. Immunol. 2016; 75(3): 298-309. https://dx.doi.org/10.1111/aji.12477
  9. Jarrell J. The significance and evolution of menstruation. Best Pract. Res. Clin. Obstet. Gynaecol. 2018; 50: 18-26. https://dx.doi.org/10.1016/ j.bpobgyn.2018.01.007
  10. Липатов И.С., Тезиков Ю.В., Кутузова О.А., Приходько А.В., Фролова Н.А., Рябова С.А. Клинико-патогенетические варианты дезадаптации беременных на ранних сроках гестации. Акушерство, гинекология и репродукция. 2017; 11(1): 5-13. [Lipatov I.S., Tezikov Yu.V., Kutuzova O.A., Prikhodko A.V., Frolova N.A., Ryabova S.A. Clinical and pathogenetic variants of maladaptation of pregnant women in theearlystages of gestation. Obstetrics, Gynecology and Reproduction. 2017; 11(1): 5-13. (in Russian)]. https://dx.doi.org/10.17749/2313-7347.2017.11.1.005-013
  11. Diakiw S.M., Hall J.M.M., Ver Milyea M., Lim A.Y.X., Quangkananurug W., Chanchamroen S. et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod. Biomed. Online. 2022; 45(6): 1105-17. https://dx.doi.org/10.1016/j.rbmo.2022.07.018
  12. Bezemer R.E., Faas M.M., van Goor H., Gordijn S.J., Prins J.R. Decidual macrophages and Hofbauer cells in fetal growth restriction. Front. Immunol. 2024; 28(15):1379537. https://dx.doi.org/10.3389/ fimmu.2024.1379537
  13. Bezemer R.E., Schoots M.H., Timmer A., Scherjon S.A., Erwich J.J.H.M., van Goor H. et al. Altered levels of decidual immune cell subsets in fetal growth restriction, stillbirth, and placental pathology. Front. Immunol. 2020; 20(11): 1898. https://dx.doi.org/10.3389/fimmu.2020.01898
  14. Roberts R.M., Green J.A., Schulz L.C. The evolution of the placenta. Reproduction. 2016; 152(5): R179-89. https://dx.doi.org/10.1530/ REP-16-0325
  15. Booker W., Moroz L. Abnormal placentation. Semin. Perinatol. 2019; 43(1): 51-9. https://dx.doi.org/10.1053/j.semperi.2018.11.009.
  16. Ant L., Dily F.L., Beato M., Saragüeta P. Quantitative analysis of cellular morphology during in vitro decidualization. Curr. Protoc. 2023; 3(10): e895. https://dx.doi.org/10.1002/cpz1.895
  17. Carter A.M. Genomics, the diversification of mammals, and the evolution of placentation. Dev. Biol. 2024; 516: 167-82. https://dx.doi.org/10.1016/ j.ydbio.2024.08.011
  18. Eggermann T. Human reproduction and disturbed genomic imprinting. Genes (Basel). 2024; 26; 15(2): 163. https://dx.doi.org/10.3390/genes15020163
  19. Zakar T., Paul J.W. Fetal membrane epigenetics. Front. Physiol. 2020; 11: 588539. https://dx.doi.org/10.3389/fphys.2020.588539
  20. Zampieri F., Thiene G., Basso C., Zanatta A. The three fetal shunts: A story of wrong eponyms. J. Anat. 2021; 238(4): 1028-35. https://dx.doi.org/10.1111/joa.13357
  21. Shi J.X., Yang L., Gan J., Gu W.W., Gu Y., Shi Y. et al. MiR-3074-5p regulates trophoblasts function via EIF2S1/GDF15 pathway in recurrent miscarriage. Reprod. Sci. 2024; 31(5): 1290-302. https://dx.doi.org/10.1007/ s43032-023-01436-0
  22. Jia Z., Wei Y., Zhang Y., Song K., Yuan J. Metabolic reprogramming and heterogeneity during the decidualization process of endometrial stromal cells. Cell Commun. Signal. 2024; 22(1): 385. https://dx.doi.org/10.1186/ s12964-024-01763-y
  23. Zhao Q.Y., Li Q.H., Fu Y.Y., Ren C.E., Jiang A.F., Meng Y.H. Decidual macrophages in recurrent spontaneous abortion. Front. Immunol. 2022; 13: 994888. https://dx.doi.org/10.3389/fimmu.2022.994888
  24. Stevens D.U., de Nobrega Teixeira J.A., Spaanderman M.E.A., Bulten J., van Vugt J.M.G., Al-Nasiry S. Understanding decidual vasculopathy and the link to preeclampsia: A review. Placenta. 2020; 97: 95-100. https://dx.doi.org/10.1016/j.placenta.2020.06.020
  25. Pantos K., Grigoriadis S., Maziotis E., Pistola K., Xystra P., Pantou A. et al. The role of interleukins in recurrent implantation failure: a comprehensive review ofthe literature. Int. J. Mol. Sci. 2022; 23(4): 2198. https://dx.doi.org/10.3390/ijms23042198
  26. He Y., Ju Y., Lei H., Dong J., Jin N., Lu J. et al. MiR-135a-5p regulates window of implantation by suppressing pinopodes development and decidualization of endometrial stromal cells. J. Assist. Reprod. Genet. 2024; 41(6): 1645-59. https://dx.doi.org/10.1007/s10815-024-03088-8
  27. Sun C., Groom K.M., Oyston C., Chamley L.W., Clark A.R., James J.L. The placenta in fetal growth restriction: What is going wrong? Placenta. 2020; 96: 10-8. https://dx.doi.org/10.1016/j.placenta.2020.05.003
  28. Vondra S., Höbler A.L., Lackner A.I., Raffetseder J., Mihalic Z.N., Vogel A. et al. The human placenta shapes the phenotype of decidual macrophages. Cell Rep. 2023; 42(1): 111977. https://dx.doi.org/10.1016/j.celrep.2022.111977
  29. Yousefzadeh Y., Soltani-Zangbar M.S., Kalafi L., Tarbiat A., Shahmohammadi Farid S., Aghebati-Maleki L. et al. Evaluation of CD39, CD73, HIF-1α, and their related miRNAs expression in decidua of preeclampsia cases compared to healthy pregnant women. Mol. Biol. Rep. 2022; 49(11): 10183-93. https://dx.doi.org/10.1007/s11033-022-07887-z
  30. Zhou M., Xu H., Zhang D., Si C., Zhou X., Zhao H. et al. Decreased PIBF1/IL6/p-STAT3 during the mid-secretory phase inhibits human endometrial stromal cell proliferation and decidualization. J. Adv. Res. 2020; 30: 15-25. https://dx.doi.org/10.1016/j.jare.2020.09.002
  31. Guo X., Yi H., Li T.C., Wang Y., Wang H., Chen X. Role of vascular endothelial growth factor (VEGF) in human embryo implantation: clinical implications. Biomolecules. 2021; 11(2): 253. https://dx.doi.org/10.3390/biom11020253
  32. Тезиков Ю.В., Липатов И.С., Фролова Н.А., Кутузова О.А., Приходько А.В., Рябова С.А. Информативность предикторов больших акушерских синдромов у беременных с эмбриоплацентарной дисфункцией. Аспирантский вестник Поволжья. 2015; 5-6: 48-55. [Tezikov Yu.V., Lipatov I.S., Frolova N.A., Kutuzova O.A., Prikhodko A.V., Ryabova S.A. Informative value of predictors of major obstetric syndromes inpregnant women with embryoplacental dysfunction. Postgraduate Bulletin of the Volga region. 2015; (5-6): 48-55. (in Russian)]. https://dx.doi.org/10.17816/ 2072-2354.2015.0.5-6.48-55
  33. Johnson G.A., Burghardt R.C., Bazer F.W., Seo H., Cain J.W. Integrins and their potential roles in mammalian pregnancy. J. Anim. Sci. Biotechnol. 2023; 14(1): 115. https://dx.doi.org/10.1186/s40104-023-00918-0
  34. Flores-Espinosa P., Méndez I., Irles C., Olmos-Ortiz A., Helguera-Repetto C., Mancilla-Herrera I. et al. Immunomodulatory role of decidual prolactin on the human fetal membranes and placenta. Front. Immunol. 2023; 14: 1212736. https://dx.doi.org/10.3389/fimmu.2023.1212736
  35. Kimura M., Kajihara T., Mizuno Y., Sato T., Ishihara O. Loss of high-mobility group N5 contributes to the promotion of human endometrial stromal cell decidualization. Reprod. Med. Biol. 2018; 17(4): 493-9. https://dx.doi.org/10.1002/rmb2.12226
  36. Menkhorst E., So T., Rainczuk K., Barton S., Zhou W., Edgell T. et al. Endometrial stromal cell miR-19b-3p release is reduced during decidualization implying a role in decidual-trophoblast cross-talk. Front. Endocrinol. (Lausanne). 2023; 14: 1149786. https://dx.doi.org/10.3389/fendo.2023.1149786
  37. Сухих Г.Т., Силачев Д.Н., Горюнов К.В., Волочаева М.В., Шмаков Р.Г. Роль дисфункции стволовых клеток в развитии больших акушерских синдромов. Акушерство и гинекология. 2018; 7: 5-11. [Sukhikh G.T., Silachev D.N., Goryunov K.V., Volochaeva M.V., Shmakov R.G. Role of stem cell dysfunction in the development of great obstetrical syndromes. Obstetrics and Gynecology. 2018; (7): 5-11. (in Russian)]. https://dx.doi.org/10.18565/aig.2018.7.5-11
  38. Низяева Н.В., Амирасланов Э.Ю., Ломова Н.А., Павлович С.В., Савельева Н.А., Наговицына М.Н., Сухачёва Т.В., Серов Р.А., Щеголев А.И., Kан Н.Е. Ультраструктурные и иммуногистохимические особенности плаценты при преэклампсии в сочетании с задержкой роста плода. Акушерство и гинекология. 2019; 11: 97-106. Nizyaeva N.V., Amiraslanov E.Yu., Lomova N.A., Pavlovich S.V., Savel’eva N.A., Nagovitsyna M.N., Sukhacheva T.V., Serov R.A., A.I. Shchegolev, Kan N.E. Placental ultrastructural and immunohistochemical changes in preeclampsia with concomitant fetal growth restriction. Obstetrics and Gynecology. 2019; (11): 97-106. (in Russian)]. https://dx.doi.org/10.18565/aig.2019.11.97-106
  39. Garrido-Gomez T., Quiñonero A., Dominguez F., Rubert L., Perales A., Hajjar K.A. et al. Preeclampsia: a defect in decidualization is associated with deficiency of Annexin A2. Am. J. Obstet. Gynecol. 2020; 222(4): 376.e1-376.e17. https://dx.doi.org/10.1016/j.ajog.2019.11.1250
  40. Lin X., Dai Y., Gu W., Zhang Y., Zhuo F., Zhao F. et al. The involvement of RNA N6-methyladenosine and histone methylation modification in decidualization and endometriosis-associated infertility. Clin. Transl. Med. 2024; 14(2): e1564. https://dx.doi.org/10.1002/ctm2.1564
  41. Bonney E.A., Johnson M.R. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta. 2019; 79: 53-61. https://dx.doi.org/10.1016/j.placenta.2019.03.003
  42. Goto S., Ozaki Y., Ozawa F., Yoshihara H., Ujvari D., Kitaori T. et al. Impaired decidualization and relative increase of PROK1 expression in the decidua of patients with unexplained recurrent pregnancy loss showing insulin resistance. J. Reprod. Immunol. 2023; 160: 104155. https://dx.doi.org/10.1016/ j.jri.2023.104155
  43. Yang J., Li L., Wang L., Chen R., Yang X., Wu J. et al. Trophoblast-derived miR-410-5p induces M2 macrophage polarization and mediates immunotolerance at the fetal-maternal interface by targeting the STAT1 signaling pathway. J. Transl. Med. 2024; 22(1): 19 https://dx.doi.org/10.1186/s12967-023-04831-y
  44. Lothert P.K., Fedyshyn B., Girard S., Chakraborty R., Norgan A.P., Enninga E.A.L. Spatial proteomics reveals phenotypic and functional differences in T cell and macrophage subsets during villitis of unknown etiology. Sci. Rep. 2024; 14(1): 914. https://dx.doi.org/10.1038/s41598-024-51545-2
  45. Xu R., Li C., Liu X., Gao S. Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2021; 12(1): 7-28. https://dx.doi.org/10.1007/ s13238-020-00757-z
  46. Zhang Q., Tian P., Xu H. MicroRNA-155-5p regulates survival of human decidua stromal cells through NF-κB in recurrent miscarriage. Reprod. Biol. 2021; 21(3): 100510. https://dx.doi.org/10.1016/j.repbio.2021.100510
  47. Липатов И.С., Тезиков Ю.В., Мартынова Н.В., Мингалиева Л.К., Гогель Л.Ю., Белоконева Т.С., Калинкина О.Б., Жернакова Е.В., Юсупова Р.Р. Универсальный подход к профилактике синдрома патологической беременности. Наука и инновации в медицине. 2017; 1(5): 13-23. [Lipatov I.S., Tezikov Yu.V., Martynova N.V., Mingalieva L.K., Gogel L.Yu., Belokoneva T.S., Kalinkina O.B., Zhernakova E.V., Yusupova R.R. Universal approach to the prevention of the syndrome of pathological pregnancy. Science and Innovations in Medicine. 2017; 1(5): 13-23. (in Russian)]. https://dx.doi.org/10.35693/2500-1388-2017-0-1-13-23
  48. Dai W., Guo R., Na X., Jiang S., Liang J., Guo C. et al. Hypoxia and the endometrium: An indispensable role for HIF-1α as therapeutic strategies. Redox. Biol. 2024; 73: 103205. https://dx.doi.org/10.1016/ j.redox.2024.103205
  49. Muneeba S. Jr., Acharya N., Mohammad S. The role of dydrogesterone in the management of luteal phase defect: a comprehensive review. Cureus. 2023; 15(11): e48194. https://dx.doi.org/10.7759/cureus.48194
  50. Yuan L., Wu H., Huang W., Bi Y., Qin A., Yang Y. The function of metformin in endometrial receptivity (ER) of patients with polycyclic ovary syndrome (PCOS): a systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2021; 19(1): 89. https://dx.doi.org/10.1186/s12958-021-00772-7
  51. Lasch M., Sudan K., Paul C., Schulz C., Kolben T., Dorp J.V. et al. Isolation of decidual macrophages and hofbauer cells from term placenta-comparison of the expression of CD163 and CD80. Int. J. Mol. Sci. 2022; 23(11): 6113. https://dx.doi.org/10.3390/ijms23116113
  52. Zong Y., Wang X., Wang J. Research progress on the correlation between gut microbiota and preeclampsia: microbiome changes, mechanisms and treatments. Front. Cell Infect. Microbiol. 2023; 13: 1256940. https://dx.doi.org/10.3389/fcimb.2023.1256940
  53. Li P., Wang H., Guo L., Gou X., Chen G., Lin D. et al. Association between gut microbiota and preeclampsia-eclampsia: a two-sample Mendelian randomization study. BMC Med. 2022; 20(1): 443. https://dx.doi.org/10.1186/s12916-022-02657-x
  54. Chaemsaithong P., Sahota D.S., Poon L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022; 226(2S): S1071-S1097.e2. https://dx.doi.org/10.1016/j.ajog.2020.07.020
  55. Rong M., Yan X., Zhang H., Zhou C., Zhang C. Dysfunction of decidual macrophages is a potential risk factor in the occurrence of preeclampsia. Front. Immunol. 2021; 12(12): 655655. https://dx.doi.org/10.3389/fimmu.2021.655655
  56. Smith D.D., Costantine M.M. The role of statins in the prevention of preeclampsia. Am. J. Obstet. Gynecol. 2022; 226(2S): S1171-S1181. https://dx.doi.org/10.1016/j.ajog.2020.08.040
  57. Statins: Drug Safety Communication – FDA Requests Removal of Strongest Warning Against Using Cholesterol-lowering Statins During Pregnancy. Available at: https://www.fda.gov/safety/medical-product-safety-information/statins-drug-safety-communication-fda-requests-removal-strongest-warning-against-using-cholesterol
  58. Chang J., Chen Y., Chen I., Lin W., Chen Y., Lin C. Perinatal outcomes after statin exposure during pregnancy. JAMA Netw. Open. 2021; 4(12): e2141321. https://dx.doi.org/10.1001/jamanetworkopen.2021.41321
  59. Борис Д.А., Тютюнник В.Л., Кан Н.Е., Щеголев А.И., Синицына В.А., Садекова А.А., Красный А.М. Особенности изменения клеток моноцитарно-макрофагального звена в плаценте при преэклампсии. Акушерство и гинекология. 2021; 10: 48-54. [Boris D.A., Tyutyunnik V.L., Kan N.E., Shchegolev A.I., Sinitsyna V.A., Sadekova A.A., Krasnyi A.M. Features of changes in the monocyte-macrophage cells in the placenta during preeclampsia. Obstetrics and Gynecology. 2021; (10): 48-54 (in Russian)]. https://dx.doi.org/10.18565/aig.2021.10.48-54
  60. Erez O., Romero R., Jung E., Chaemsaithong P., Bosco M., Suksai M. et al. Preeclampsia and eclampsia: the conceptual evolution of a syndrome. Am. J. Obstet. Gynecol. 2022; 226(2S): S786-S803. https://dx.doi.org/10.1016/ j.ajog.2021.12.001

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2025