Prenatal diagnosis of thanatophoric dysplasia

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Thanatophoric dysplasia is an autosomal dominant congenital disorder associated with primary bone dysplasia. Thanatophoric dysplasia is caused by mutation of the gene that encodes fibroblast growth factor 3 (FGFR3).

Case report: The paper presents two clinical observations of thanatophoric dysplasia. In both cases, pregnant women were referred for invasive prenatal diagnosis which identified the normal male karyotype of the fetus.

In the first case, a number of markers of chromosomal abnormalities were detected in the first trimester using ultrasound. There were no markers allowing to suspect skeletal dysplasia. The ultrasound examination performed at 19–20 weeks’ gestation revealed multiple congenital malformations including shortening and bowing of the limbs. The boy who was born at 36–37 weeks’ gestation after surgical delivery had the following congenital malformations: shortening of limb bones, hypoplasia of the chest, anomalies of the ribs and spine, secondary hypoplasia of the lungs. The child died in the neonatal period.

In the second case, there were the following abnormalities of the musculoskeletal system in the fetus at 14–15 weeks’ gestation: shortening and deformation of the tubular bones of the arms and legs, hypoplasia of the chest, clover-shaped skull. The patient provided the consent for termination of pregnancy.

Pathogenic variants in the FGFR3 gene were identified during a subsequent study of DNA which was isolated from chorionic villi. In the first case, the c.1948 A>G variant was identified, while the c.742 C>T was revealed in the second one; both variants were previously described as pathogenic.

Conclusion: It is necessary to confirm the diagnosis of thanatophoric dysplasia using molecular genetic research methods and ultrasound assessment showing the signs of fetal skeletal pathology in order to clarify the medical indications for termination of pregnancy and to determine the prognosis for future offspring in the family.

全文:

受限制的访问

作者简介

Olga Lagutina

Institute of Medical Cell Technologies; Medical Center “Mother and Child Health Protection”

Email: ovlagutina@bk.ru
ORCID iD: 0009-0003-3888-4294

Biologist at the Molecular Diagnostic Laboratory, Researcher at the Laboratory of Molecular Genetic Research

俄罗斯联邦, 620026, Yekaterinburg, Karla Marksa str., 22A; 620067, Yekaterinburg, Flotskaya str., 52

Maria Sumina

Medical Center “Mother and Child Health Protection”

Email: m.sumina@mail.ru
ORCID iD: 0000-0002-2883-4029

Head of the Department of Medical Genetic Counseling

俄罗斯联邦, Yekaterinburg

Elena Kudryavtseva

Institute of Medical Cell Technologies; Medical Center “Mother and Child Health Protection”; Ural State Medical University, Ministry of Health of Russia

编辑信件的主要联系方式.
Email: elenavladpopova@yandex.ru
ORCID iD: 0000-0003-2797-1926

Dr. Med. Sci., Head of the Central Research Laboratory, Researcher at the Laboratory of Molecular Genetic Research

俄罗斯联邦, 620026, Yekaterinburg, Karla Marksa str., 22A; 620067, Yekaterinburg, Flotskaya str., 52; 620028, Yekaterinburg, Repina str., 3

Natal'ja Mostova

Medical Center “Mother and Child Health Protection”

Email: mostova-n24@yandex.ru
ORCID iD: 0009-0005-0286-9628

prenatal diagnostics doctor

俄罗斯联邦, 620067, Yekaterinburg, Flotskaya str., 52

Svetlana Deryabina

Institute of Medical Cell Technologies; Medical Center “Mother and Child Health Protection”; Ural State Medical University, Ministry of Health of Russia

Email: deryabina.sst@gmail.com
ORCID iD: 0000-0001-5614-5944

PhD (Bio), Head of the Laboratory of Molecular Diagnostics, Center for specialized types of medical care Institute of Medical Cell Technologies

俄罗斯联邦, 620026, Екатеринбург, ул. Карла Маркса, д. 22A; 620067, Екатеринбург, ул. Флотская, д. 52; 620028, Екатеринбург, ул. Репина, 3

参考

  1. French T., Savarirayan R. Thanatophoric Dysplasia. 2004 May 21 [updated 2023 May 18]. In: Adam M.P., Feldman J., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023.
  2. Wainwright H. Thanatophoric dysplasia: A review. S. Afr. Med. J. 2016; 106(6 Suppl 1): S50-3. https://dx.doi.org/10.7196/SAMJ.2016.v106i6.10993.
  3. Ushioda M., Sawai H., Numabe H., Nishimura G., Shibahara H. Development of individuals with thanatophoric dysplasia surviving beyond infancy. Pediatr. Int. 2022; 64(1): e15007. https://dx.doi.org/10.1111/ped.15007.
  4. Carroll R.S., Duker A.L., Schelhaas A.J., Little M.E., Miller E.G., Bober M.B. Should we stop calling thanatophoric dysplasia a lethal condition? A case report of a long-term survivor. Palliat. Med. Rep. 2020; 1(1): 32-9. https://dx.doi.org/10.1089/pmr.2020.0016.
  5. Hall C.M., Liu B., Haworth A., Reed L., Pryce J., Mansour S. Early prenatal presentation of the cartilage-hair hypoplasia/anauxetic dysplasia spectrum of disorders mimicking recurrent thanatophoric dysplasia. Eur. J. Med. Genet. 2021; 64(3): 104162. https://dx.doi.org/10.1016/ j.ejmg.2021.104162.
  6. Jimah B.B., Mensah T.A., Ulzen-Appiah K., Sarkodie B.D., Anim D.A., Amoako E. et al. Prenatal diagnosis of skeletal dysplasia and review of the literature. Case Rep. Obstet. Gynecol. 2021; 2021: 9940063. https://dx.doi.org/10.1155/2021/9940063.
  7. Kim H.Y., Ko J.M. Clinical management and emerging therapies of FGFR3-related skeletal dysplasia in childhood. Ann. Pediatr. Endocrinol. Metab. 2022; 27(2): 90-7. https://dx.doi.org/10.6065/apem.2244114.057.
  8. Xue Y., Sun A., Mekikian P.B., Martin J., Rimoin D.L., Lachman R.S., Wilcox W.R. FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Mol. Genet. Genomic Med. 2014; 2(6): 497-503. https://dx.doi.org/10.1002/mgg3.96.
  9. Foldynova-Trantirkova S., Wilcox W.R., Krejci P. Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum. Mutat. 2012; 33(1): 29-41. https://dx.doi.org/10.1002/humu.21636.
  10. Chen C.-P., Chang T.-Y., Lin M.-H., Chern S.-R., Su J.-W., Wang W. Rapid detection of K650E mutation in FGFR3 using uncultured amniocytes in a pregnancy affected with fetal cloverleaf skull, occipital pseudoencephalocele, ventriculomegaly, straight short femurs, and thanatophoric dysplasia type II. Taiwan. J. Obstet. Gynecol. 2013; 52(3): 420-5. https://dx.doi.org/10.1016/ j.tjog.2013.05.003.
  11. Lievens P.M.-J., Liboi E. The thanatophoric dysplasia type II mutation hampers complete maturation of fibroblast growth factor receptor 3 (FGFR3), which activates signal transducer and activator of transcription 1 (STAT1) from the endoplasmic reticulum. J. Biol. Chem. 2003; 278(19): 17344-9. https://dx.doi.org/10.1074/jbc.M212710200.
  12. Gülaşı S., Atıcı A., Çelik Y. A case of thanatophoric dysplasia type 2: a novel mutation. J. Clin. Res. Pediatr. Endocrinol. 2015; 7(1): 73-6. https://dx.doi.org/10.4274/jcrpe.1703.
  13. Stembalska A., Dudarewicz L., Śmigiel R. Lethal and life-limiting skeletal dysplasias: Selected prenatal issues. Adv. Clin. Exp. Med. 2021; 30(6): 641-7. https://dx.doi.org/10.17219/acem/134166.
  14. Пашук С.Н., Новикова И.В., Лазаревич А.А., Гусина А.А., Венчикова Н.А. Определение частых мутаций гена FGFR3 для дифференциальной диагностики танатофорной дисплазии: анализ 8 случаев. Пренатальная диагностика. 2022; 21(2): 137-44. [Pashuk S.N., Novikova I.V., Lazarevich A.A., Gusina A.A., Venchikova N.A. Determination of frequent FGFR3 mutations for the differential diagnosis of thanatophoric dysplasia: report of 8 cases. Prenatal Diagnosis. 2022; 21(2): 137-44. (in Russian)]. https://dx.doi.org/10.21516/ 2413-1458-2022-21-2-137-144.
  15. Jung M., Park S.-H. Genetically confirmed thanatophoric dysplasia with fibroblast growth factor receptor 3 mutation. Exp. Mol. Pathol. 2017; 102(2): 290-5. https://dx.doi.org/10.1016/j.yexmp.2017.02.019.
  16. Audu L., Gambo A., Baduku T.S., Farouk B., Yahaya A., Jacob K. Thanatophoric dysplasia: a report of 2 cases with antenatal misdiagnosis. Case Rep. Pediatr. 2022; 2022: 3056324. https://dx.doi.org/10.1155/2022/3056324.
  17. Hyland V.J., Robertson S.P., Flanagan S., Savarirayan R., Roscioli T., Masel J. et al. Somatic and germline mosaicism for a R248C missense mutation in FGFR3, resulting in a skeletal dysplasia distinct from thanatophoric dysplasia. Am. J. Med. Genet. A. 2003; 120A(2): 157-68. https://dx.doi.org/10.1002/ajmg.a.20012.
  18. Mettler G., Fraser F.C. Recurrence risk for sibs of children with “sporadic” achondroplasia. Am. J. Med. Genet. 2000; 90(3): 250-1.
  19. Leal G.F., Nishimura G., Voss U., Bertola D.R., Åström E., Svensson J. et al. Expanding the clinical spectrum of phenotypes caused by pathogenic variants in PLOD2. J. Bone Miner. Res. 2018; 33(4): 753-60. https://dx.doi.org/10.1002/jbmr.3348.
  20. Wang L., Li R., Zhai J., Zhang B., Wu J., Pang L., Liu Y. Whole exome sequencing combined with dynamic ultrasound assessments for fetal skeletal dysplasias: 4 case reports. Medicine (Baltimore). 2022; 101(43): e31321. https://dx.doi.org/10.1097/MD.0000000000031321.

补充文件

附件文件
动作
1. JATS XML
2. Fig.1.

下载 (1009KB)
3. Fig.2.

下载 (1MB)
4. Fig.3.

下载 (144KB)
5. Fig.4.

下载 (626KB)
6. Fig.5.

下载 (179KB)

版权所有 © Bionika Media, 2023
##common.cookie##