Large Intraspecies Variation in Stable Isotope Composition of the Muscle Tissues in Fish of the Genus Cyprinion (cyprinidae) from Middle East
- Authors: Levin B.A.1,2, Kaya Ç.3, Komarova A.S.1,2, Levina M.A.1,4, Rozanova O.L.2, Tiunov A.V.2
-
Affiliations:
- Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
- Recep Tayyip Erdoğan University
- Cherepovets State Univesity
- Issue: Vol 17, No 6 (2024)
- Pages: 1008-1015
- Section: ЭКОЛОГИЧЕСКАЯ ФИЗИОЛОГИЯ И БИОХИМИЯ ГИДРОБИОНТОВ
- URL: https://journals.eco-vector.com/0320-9652/article/view/670032
- DOI: https://doi.org/10.31857/S0320965224060134
- EDN: https://elibrary.ru/WWWYOU
- ID: 670032
Cite item
Abstract
Significant individual variation of nitrogen and carbon isotope composition (δ 15 N and δ 13 C values) in white muscle tissues was found in samples of three cyprinid fish species, Cyprinion macrostomus (periphytonophage), Cyprinion kais (benthophage), and Luciobarbus schejch (omnivore), collected in a small tributary of the upper Tigris system (Turkey). In particular, exceptionally low value (1.7‰) and abnormally wide intraspecific variability (from 1.7 to 15.8‰) of δ 15 N were observed in C. macrostomus . Despite samples were collected synchronously and syntopically, very broad range of δ 15 N values points out possible heterogeneity of the samples. The studied watercourse is located in the zone of agriculture with intensive chemicalization and pollution of the river by mobile forms of nitrogen (mostly ammonium) could play a significant role in lowering δ 15 N values, especially in the periphytonophage. Along with that, fish with high (normal) δ 15 N values are supposedly recent migrants that came from a large river for joint spawning with resident fish. The pollution of water bodies as well as the presence of migrations should be taking into account in stable isotope analyses-based studies on trophic ecology of fishes.
About the authors
B. A. Levin
Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Author for correspondence.
Email: borislyovin@gmail.com
Russian Federation, Borok, Nekouzskii raion, Yaroslavl oblast; Moscow
Çüneyt Kaya
Recep Tayyip Erdoğan University
Email: borislyovin@gmail.com
Turkey, Rize
A. S. Komarova
Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: borislyovin@gmail.com
Russian Federation, Borok, Nekouzskii raion, Yaroslavl oblast; Moscow
M. A. Levina
Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences; Cherepovets State Univesity
Email: borislyovin@gmail.com
Russian Federation, Borok, Nekouzskii raion, Yaroslavl oblast; Cherepovets
O. L. Rozanova
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: borislyovin@gmail.com
Russian Federation, Moscow
A. V. Tiunov
Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Email: borislyovin@gmail.com
Russian Federation, Moscow
References
- Al-Ansari N., Jawad S., Adamo N., Sissakian V. 2019. Water quality and its environmental implications within Tigris and Euphrates rivers // J. Earth Sci. and Geotech. Engin. V. 9. P. 57.
- Allan J.D., Castillo M.M. 2007. Detrital energy sources // Stream ecology: Structure and function of running waters. Dordrecht: Springer. P. 135.
- Arrington D.A, Winemiller K.O. 2002. Preservation effects on stable isotope analysis of fish muscle // Transactions of the American Fisheries Society. V. 131. P. 337. https://doi.org/10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2
- Boecklen W.J., Yarnes C.T., Cook B.A., James A.C. 2011. On the use of stable isotopes in trophic ecology // Annual Review of Ecology, Evolution, and Systematics. V. 42. P. 411. https://doi.org/10.1146/annurev-ecolsys-102209-144726
- Britton A.W., Murrell D.J., McGill R.A. et al. 2019. The effects of land use disturbance vary with trophic position in littoral cichlid fish communities from Lake Tanganyika // Freshwater Biol. V. 64. № 6. P. 1114. https://doi.org/10.1111/fwb.13287
- Burress E.D., Holcomb J.M., Bonato K.O., Armbruster J.W. 2016. Body size is negatively correlated with trophic position among cyprinids // Royal Soc. Open Sci. V. 3. Art. 150652. https://doi.org/10.1098/rsos.150652
- Campbell L.M., Wandera S.B., Thacker R.J. et al. 2005. Trophic niche segregation in the Nilotic ichthyofauna of Lake Albert (Uganda, Africa) // Environ. Biol. Fish. V. 74. P. 247. https://doi.org/10.1007/s10641-005-3190-8
- Coad B.W. 2021. Carps and Minnows of Iran (Families Cyprinidae and Leuciscidae). V. I: General Introduction and Carps (Family Cyprinidae). [Электронный ресурс]. Режим доступа: http://briancoad.com/Species%20Accounts/Carps%20of%20Iran%2010Sept2opt1.pdf. Дата обновления: 21.01.2024.
- Comtois D. 2018. Summarytools: Tools to Quickly and Neatly Summarize Data. R Package Version 0.8. 72018. [Электронный ресурс]. Режим доступа: https://CRAN.R-project.org/package=summarytools . Дата обновления: 20.05.2022.
- De Carvalho D.R., Alves C.B.M., Flecker A.S. et al. 2020. Using δ15N of periphyton and fish to evaluate spatial and seasonal variation of anthropogenic nitrogen inputs in a polluted Brazilian river basin // Ecol. Indicators. V. 115. Art. 106372. https://doi.org/10.1016/j.ecolind.2020.106372
- Doi H. 2009. Spatial patterns of autochthonous and allochthonous resources in aquatic food webs // Population Ecol. V. 51. № 1. P. 57. https://doi.org/10.1007/s10144-008-0127-z
- Durante L.M., Sabadel A.J., Frew R.D. et al. 2020. Effects of fixatives on stable isotopes of fish muscle tissue: implications for trophic studies on preserved specimens // Ecol. Appl. V. 30. № 4. Art. e02080. https://doi.org/10.1002/eap.2080
- Faghani Langroudi H., Mousavi Sabet H. 2018. Reproductive biology of lotak, Cyprinion macrostomum Heckel, 1843 (Pisces: Cyprinidae), from the Tigris River drainage // Iran. J. Fish Sci. V. 17. P. 288.
- Finlay J.C. 2001. Stable-carbon-isotope ratios of river biota: implications for energy flow in lotic food webs // Ecology. V. 82. Is. 4. P. 1052. https://doi.org/10.1890/0012-9658(2001)082[1052:SCIROR]2.0.CO;2
- Gladyshev M.I. 2009. Stable Isotope Analyses in Aquatic Ecology (a review) // J. Siberian Federal Univ. Biol. V. 2. № 4. P. 381.
- Jackson A.L., Parnell A.C., Inger R., Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER0–Stable Isotope Bayesian Ellipses in R // J. Anim. Ecol. V. 80. P. 595. https://doi.org/10.1111/j.1365-2656.2011.01806.x
- Komarova A.S., Golubtsov A.S., Levin B.A. 2022. Trophic diversification out of ancestral specialization: An example from a radiating African cyprinid fish (genus Garra ) // Diversity. V. 14. № 8. Art. 629. https://doi.org/10.3390/d14080629
- Komarova A.S., Rozanova O.L., Levin B.A. 2021. Trophic resource partitioning by sympatric ecomorphs of Schizopygopsis (Cyprinidae) in a young Pamir Mountain Lake: preliminary results // Ichthyol. Res. V. 68. P. 191. https://doi.org/10.3390/d14080629
- Kanaya G., Yadrenkina E.N., Zuykova E.I. et al. 2009. Contribution of organic matter sources to cyprinid fishes in the Chany Lake–Kargat River estuary, western Siberia // Marine and Freshwater Res. V. 60. P. 510.
- Lee K.Y., Graham L., Spooner D.E., Xenopoulos M.A. 2018. Tracing anthropogenic inputs in stream foods webs with stable carbon and nitrogen isotope systematics along an agricultural gradient // PloS One. V. 13. P. e0200312. https://doi.org/10.1371/journal.pone.0200312
- Levin B.A., Casal-López M., Simonov E. et al. 2019. Adaptive radiation of barbs of the genus Labeobarbus (Cyprinidae) in an East African river // Freshwater Biol. V. 64. P. 1721. https://doi.org/10.1111/fwb.13364
- Levin B.A., Komarova A.S., Rozanova O.L., Golubtsov A.S. 2021. Unexpected diversity of feeding modes among chisel-mouthed Ethiopian Labeobarbus (Cyprinidae) // Water. V. 13. № 17. Art. 2345. https://doi.org/10.3390/w13172345
- McCutchan Jr.J.H., Lewis Jr.W.M., Kendall C., McGrath C.C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur // Oikos. V. 102. Is. 2. P. 378. https://doi.org/10.1034/j.1600-0706.2003.12098.x
- Mondal R., Bhat A. 2021. Investigating the trophic ecology of freshwater fish communities from central and eastern Indian streams using stable isotope analysis // Community Ecol. V. 22. P. 203.
- Nahon S., Roussel J.M., Jaeger C. et al. 2020. Characterization of trophic niche partitioning between carp ( Cyprinus carpio ) and roach ( Rutilus rutilus ) in experimental polyculture ponds using carbon (δ13C) and nitrogen (δ15N) stable isotopes // Aquaculture. V. 522. Art. 735162. https://doi.org/10.1016/j.aquaculture.2020.735162
- Newsome S.D., Martinez del Rio C., Bearhop S., Phillips D.L. 2007. A niche for isotopic ecology // Frontiers in Ecology and the Environment. V. 5. Is. 8. P. 429. https://doi.org/10.1890/060150.1
- Pohlert T. 2021. Package ‘PMCMRplus’. R Package Version 1.9.2.2021. [Электронный ресурс]. Режим доступа: https://cran.r-project.org/web/packages/PMCMRplus/index.html . Дата обновления: 10.12.2023.
- Post D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions // Ecology. V. 83. Is. 3. P. 703. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
- Potapov A.M., Tiunov A.V., Scheu S. 2019. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition // Biol. Rev. V. 94. № 1. P. 37. https://doi.org/10.1111/brv.12434
- Power M.E., Holomuzki J.R., Lowe R.L. 2013. Food webs in Mediterranean rivers // Hydrobiologia. V. 719. P. 119. https://doi.org/10.1007/s10750-013-1510-0
- RStudio Team . 2021. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA [Электронный ресурс]. Режим доступа: http://www.rstudio.com . Дата обновления: 01.02.2024.
- Vadeboncoeur Y., Kalff J., Christoffersen K., Jeppesen E. 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes // J. North Amer. Benthol. Soc. V. 25. № 2. P. 379. https://doi.org/10.1899/0887-3593(2006)25[379:SAADOV]2.0.CO;2
- Vanderklift M.A., Ponsard S. 2003. Sources of variation in consumer-diet δ 15 N enrichment: a meta-analysis // Oecologia. V. 136. № 2. P. 169. https://doi.org/10.1007/s00442-003-1270-z
- Winter E.R., Nolan E.T., Busst G.M., Britton J.R. 2019. Estimating stable isotope turnover rates of epidermal mucus and dorsal muscle for an omnivorous fish using a diet-switch experiment // Hydrobiologia. V. 828. № 1. P. 245. https://doi.org/10.1007/s10750-018-3816-4
- Wickham H. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer: Berlin/Heidelberg, Germany.
- Wagner C.E., McIntyre P.B., Buels K.S. et al. 2009. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes // Functional Ecol. V. 23. Is. 6. P. 1122. https://doi.org/10.1111/j.1365-2435.2009.01589.x
Supplementary files
