River flow structure and its effect on pollutant distribution

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Observations show that the space and time heterogeneity of river water composition persists over indefinite time even when the effect of pollutant sources and sinks is minor. The driving forces of such heterogeneity have been supposed and shown to be, among other factors, the stratification of water matrix. Studying the structure of water flow and its effect on pollutant distribution in water was based on a system of fundamental equations of the mechanics of a fluid with a free surface. It has been shown that such effect is due to the fine structure of flows, vortices, waves and highgradient interfaces (ligaments), which is formed and maintained by the motion of water masses. This conclusion extends our knowledge of the hydrological characteristics of water flow, enables one to better understand the nature of the heterogeneity of natural water composition, and it is of practical significance as such heterogeneity can be taken into account in making water management decisions.

Full Text

Restricted Access

About the authors

Yu. D. Chashechkin

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Author for correspondence.
Email: chakin@ipmnet.ru
Russian Federation, Moscow

O. M. Rozental

Water Problems Institute, Russian Academy of Sciences

Email: orosental@rambler.ru
Russian Federation, Moscow

References

  1. Бардаков Р.Н., Васильев А.Ю., Чашечкин Ю.Д. Расчет и измерения конических пучков трехмерных периодических внутренних волн, возбуждаемых вертикально осциллирующим поршнем // Механика жидкости и газа. 2007. № 4. С. 117-133.
  2. Дрюпина Е.Ю. Методические основы расчета допустимых концентраций загрязняющих веществ в сточных водах предприятий при организации городских систем водоотведения на примере г. Барнаула. Автореф. дис. ... канд. техн. наук. Барнаул, 2014. 17 с.
  3. Зырянов В.Н., Лапина Л.Э. Склоновые течения в морях, озерах и водохранилищах, обусловленные диффузионными эффектами // Вод. ресурсы. 2012. Т. 39. № 3. С. 292-303.
  4. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. Теоретическая физика. Т.VI. М.: Наука, 1986. 736 с.
  5. Найфэ А.Х. Введение в методы возмущений. М.: Мир, 1984. 535 с.
  6. Прандтль Л. Гидроаэромеханика. М.: Изд-во иностран. лит., 1951. 576 с.
  7. Розенталь О.М., Подкин Ю.Г. Диэлектрический фрикционный эффект при переносе электролита в водной среде // ДАН. 2015. Т. 462. № 5. С. 587-589.
  8. Розенталь О.М., Подкин Ю.Г. Методы и средства диэлектрических измерений водных растворов электролитов // Измерит. техника. 2014. № 1. С. 67-74.
  9. Рона и Арв — разноцветное слияние рек https://cattur.ru/europa/switzerland/ron-i-arv.html
  10. Слияние рек https://www.tripadvisor.ru/ShowUserReviews-g303235-d554183-r229755948
  11. Чашечкин Ю.Д., Розенталь О.М. Физическая природа неоднородности состава речных вод // ДАН. 2019. Т. 485. № 5. C. 484-487.
  12. Anikeenko A.V., Malenkov G.G., Naberukhin Yu.I. Visualization of the collective vortex-like motions in liquid argon and water: Molecular dynamics simulation // J. Chem. Phys. 2018. V. 148. № 9. P. 094508-094518.
  13. Chashechkin Yu.D. Differential fluid mechanics — harmonization of analytical, numerical and laboratory models of flows // Mathematical Modeling and Optimization of Complex Structures. Springer Series “Computational Methods in Applied Sciences”. 2016. V. 40. P. 61-91. doi: 10.1007/978-3-319-23564-6-5
  14. Chashechkin Yu.D., Zagumennyi Ia.V. Non-equilibrium processes in non-homogeneous fluids under the action of external force // Physica Scripta. 2013. V. 155. 014010.doi: 10.1088/0031-8949/2013/T155/014010.
  15. Müller P. The equations of oceanic motions. Cambridge: CUP, 2006. 302 p.
  16. Rossi F., Vanag V.K., Epstein I.R. Pentanary cross-diffusion in water-in oil microemulsions loaded with two components of the Belousov-Zhabotinsky reaction // Chem. 2013. V. 17. № 7. P. 2138-2145.
  17. Sukharev Yu.I., Markov B.A. Liesegang operator. Liesegang rings as the common gross-property of oxyhydrate gel polymer systems // Изв. Коми НЦ УрО РАН.. 2002. Вып. 2(18). С. 54-66.
  18. Vallis G. K. Atmospheric and Oceanic Fluid Dynamics. Cambridge: CUP, 2006. 745 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The dependence of the monthly concentration of ammonium ion in 2001, 2002 from the observation point on sections 1 (60 m from the coast, solid line) and 2 (in the middle of the river flow, dashed line).

Download (77KB)
3. Fig. 2. The frequency of repetition of the concentration of ammonium nitrogen in 2000–2010, according to the results of observations.

Download (156KB)
4. Fig. 3. Calculated (a), (c) and observed shadow (b), (d) patterns of flows induced by diffusion on a fixed plate (L = 5 cm, N = 0.84 s – 1, Tb = 7.5 s): (b) - φ = 0 °, the method of “vertical slit - Foucault knife”; (d) - φ = 40 °, “shadow method” with a horizontal slit and a lattice.

Download (105KB)
5. Fig. 4. Fields of pressure disturbances near the wedge (L = 10 cm, h = 2 cm, Tb = 6.28 s): (a) during the flow induced by diffusion on the stationary wedge, (b) during forced movement at a speed of U = 0.001 cm / s (darkened zone - deficit, light - excess compared to the unperturbed value).

Download (172KB)
6. Fig. 5. Restructuring of the impurity distribution pattern during flow organization relative to the cylinder in a continuously stratified fluid (D = 7.6 cm; Tb = 7.1 s; U = 0.24 cm / s; Fr = 0.035; Re = 180: (a) the initial marker distribution in the resting liquids, (b) - after 55 s after the start of movement, streaky structures appear, visualizing the structure of the ligaments.

Download (114KB)

Copyright (c) 2019 Russian academy of sciences