Water Infiltration into Soil under Oscillating Precipitation Regimes


如何引用文章

全文:

详细

An analytical study of the problem of water infiltration into a homogeneous unsaturated soil showed that, in the case of periodical water recharge through the soil surface, the character of the flow will tend to uniform with the depth. The stabilization of the flow was found to be due to the effect of two factors: capillary dissipation and nonlinearity. The role of each factor was studied by constructing appropriate exact solutions. An estimate was proposed for the depth at which flow variations become insignificant. This estimate takes into account the joint effect of both these factors. An explicit expression for it contains the hydraulic characteristics of the soil and the main characteristics of the surface recharge regime. The pumping effect was also studied and it was showed that, at some assumptions regarding the soil hydraulic characteristics, it manifests itself in that the time-averaged water content in the top soil layers is less than that at greater depth.

作者简介

A. Beliaev

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

Email: beliaev@iwp.ru
Россия, 119333, Москва

I. Yushmanov

Water Problems Institute, Russian Academy of Sciences, 119333, Moscow, Russia

编辑信件的主要联系方式.
Email: beliaev@iwp.ru
Россия, 119333, Москва

参考

  1. Бэр Я., Заславски Д., Ирмей С. Физико-математические основы фильтрации воды. М.: Мир, 1971. 451 с.
  2. Веницианов Е.В., Рубинштейн Е.И. Динамика сорбции из жидких сред. М.: Наука, 1983. 292 с.
  3. Гурбатов С.Н., Руденко О.В., Саичев А.И. Волны и структуры в нелинейных средах без дисперсии. Приложения к нелинейной акустике. М.: ФИЗМАТЛИТ, 2011. 496 с.
  4. Зырянов В.Н. Нелинейный пампинг-эффект в колебательных процессах в геофизике // Вод. ресурсы. 2013. Т. 40. № 3. С. 227–239. https://doi.org/10.7868/S0321059613030097
  5. Зырянов В.Н., Хубларян М.Г. Пампинг-эффект в теории нелинейных процессов типа уравнения теплопроводности и его приложение в геофизике // ДАН. 2006. 408 (4). С. 535–538.
  6. Лапина Л.Э., Каверин Д.А., Пастухов А.В. Оценка пампинг-эффекта в мерзлотных почвах типичной тундры европейского северо-востока России // Экологический мониторинг и моделирование экосистем. 2021. Т. 32. № 3–4. С. 100–111.
  7. Alt H. Strömungen durch inhomogene poröse Medien mit freiem Rand // J. Reine Angew. Math. 1979. V. 305. P. 89–115.
  8. Alt H., Luckhaus S., Visintin A. On non-stationary flow through porous media //Ann. Mat. Pura Appl. 1984. V. 136. P. 303–316.
  9. Beliaev A.Y. Solvability of free boundary problems for steady groundwater flow // Eur. J. Applied Mathematics. 2015. V. 26 (6). P. 821–847.
  10. Belyaev A. Yu., Yushmanov I.O. Matematisk analys av icke-stationär infiltration i omäittad jord (Mathematical analysis of non-stationary processes of infiltration into unsaturated soil) // VATTEN – J. Water Management Res. 2022. V. 78. № 1. P. 21–32.
  11. Brézis H., Kinderlehrer D., Stampacchia G. Sur une nouvelle formulation du problème d'éqoulement à travers une digue // C.R. Acad. Sci. Paris. Ser. A. 1978. V. 287. P. 711–714.
  12. Brooks R.H., Corey A.T. Properties of porous media affecting fluid flow // Jour. Irrig. Drainage Div. ASCE Proc. 1966. V. 72 (IR2). P. 61–88.
  13. Green W.H., Ampt G. A. Studies in soil physics. 1. The flow of air and water through soils. // J. Agr. Sci. 1911. V. 4. P. 1–24.
  14. Li Chen Long Xiang, M.H. Young, Jun Yin, Zhongbo Yu, Genuchten M.T. van. Optimal parameters for the Green-Ampt infiltration model under rainfall conditions // J. Hydrol. Hydromech. 2015. V. 63 (2). P. 93–101. https://doi.org/10.1515/johh-2015-0012
  15. Richards L.A. Capillary conduction of liquids through porous medium // Physics. 1931. V. 1. P. 318–333.
  16. Philip J.R. An infiltration equation with physical significance // Soil Sci. 1954. V. 77. P. 153–157.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (68KB)
3.

下载 (51KB)
4.

下载 (58KB)

版权所有 © А.Ю. Беляев, И.О. Юшманов, 2023