Longevity in males and females of Aedes (Ochlerotatus) cantans (Meigen) and A. (O.) communis (De Geer) (Diptera, Culicidae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Longevity of adult males and females of mosquitoes Aedes (Ochlerotatus) communis (De Geer) and A. (O.) cantans (Meigen), emerged and reared in laboratory conditions, was estimated. Imagines were reared in groups in specially constructed containers with free access to sucrose and water, with mean environmental temperature of 21–22 °С, 50% air humidity inside containers, and natural light regimen. A separate group of A. cantans was reared from eggs (embryos), collected with fallen leaves from under snow. It was recognized that adult males of both species live shorter than their conspecific females. Longevity in A. cantans, in general, is greater than in A. communis; the statistically significant interspecific differences were revealed when survival curves of males were compared. Maximum recorded longevity was 42.5 and 74 days for adult females of A. communis and A. cantans, respectively. Adult females of A. cantans, reared from embryos under laboratory conditions at mean water temperature of 19°C, had the mean life expectancy similar to that obtained for conspecific adult females reared from larvae and pupae collected in nature (40 and 34 days, respectively). Two groups of their male counterparts had identical mean life expectancy values (15 days). The results mean that A. cantans adults are more convenient than adults of A. communis for prolonged experiments under laboratory conditions. Probably, adults of A. cantans reared from embryos are, in general, not less viable than their conspecifics hatched and developed at pre-imaginal stages in natural conditions.

Full Text

Restricted Access

About the authors

A. V. Razygraev

Зоологический институт РАН

Author for correspondence.
Email: a.v.razygraev@gmail.com
Russian Federation, Университетская наб., 1, С.-Петербург, 199034

References

  1. Медведев С. Г., Айбулатов С. В., Панюкова Е. В. 2010. Экологические особенности и распространение комара Aedes communis (De Geer, 1776) на территории Северо-Запада европейской части России. Паразитология 44 (5): 441–460.
  2. Некрасова Л. С., Вигоров Ю. Л., Вигоров А. Ю. 2008. Экологическое разнообразие кровососущих комаров Урала. Екатеринбург: УрО РАН, 208 с.
  3. Панюкова Е. В., Пестов С. В. 2015. Фауна и экология кровососущих комаров (Diptera, Culicidae) Кировской области. Паразитология 49 (3): 208–224.
  4. Andersson I. H. 1992. The effect of sugar meals and body size on fecundity and longevity of female Aedes communis (Diptera: Culicidae). Physiological Entomology 17 (3): 203–207. https://doi.org/10.1111/j.1365-3032.1992.tb01011.x
  5. Andreadis S. S., Dimotsiou O. C., Savopoulou-Soultani M. 2014. Variation in adult longevity of Culex pipiens f. pipiens, vector of the West Nile Virus. Parasitology Research 113 (11): 4315–4319. https://doi.org/10.1007/s00436-014-4152-x
  6. Becker N., Petrić D., Zgomba M., Boase C., Dahl C., Lane J., Kaiser A. 2010. Mosquitoes and Their Control, 2nd ed. Berlin: Springer, 577 p. https://doi.org/10.1007/978-3-540-92874-4
  7. Benjamini Y., Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57 (1): 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  8. Chant G. D., Baldwin W. F. 1972. Dispersal and longevity of mosquitoes tagged with 32P. The Canadian Entomologist 104 (6): 941–944. https://doi.org/10.4039/Ent104941-6
  9. Cox D. R. 1972. Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological) 34 (2): 187–202. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
  10. Hubálek Z. 2008. Mosquito-borne viruses in Europe. Parasitology Research (Suppl. 1) 103: S29–S43. https://doi.org/10.1007/s00436-008-1064-7
  11. Jarosz A. F., Wiley J. 2014. What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving 7: 2–9. http://dx.doi.org/10.7771/1932-6246.1167
  12. Kassambara A., Kosinski M., Biecek P., Fabian S. 2017. Package ‘survminer’. Drawing Survival Curves Using ‘ggplot2’ (R package version 03 1). [Пакет R] URL: https://cran.r-project.org/web/packages/survminer/index.html (дата обращения: 23 декабря 2023 г.).
  13. Kim G., Lee S. W. 2016. Bayesian test for hazard ratio in survival analysis. SpringerPlus, 5: 649. https://doi.org/10.1186/s40064-016-2210-9
  14. Linde M., Tendeiro J. N., van Ravenzwaaij D. 2022a. Bayes factors for two-group comparisons in Cox regression. MedRxiv. [Препринт] https://doi.org/10.1101/2022.11.02.22281762
  15. Linde M., van Ravenzwaaij D., Tendeiro J. N. 2022b. baymedr: Computation of Bayes Factors for Common Biomedical Designs [Пакет R] URL: https://github.com/maxlinde/baymedr (дата обращения: 25 января 2024 г.).
  16. Mantel N. 1966. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemotherapy Reports 50 (3): 163–170.
  17. Mohammed S. 2019. Introduction to Survival Analysis using R. Workshop on Computational Biostatistics and Survival Analysis. https://shariq-mohammed.github.io/files/cbsa2019/1-intro-to-survival.html (дата обращения: 29 октября 2023 г.).
  18. Morey R. D., Rouder J. N., Jamil T., Urbanek S., Forner K., Ly A. 2014. BayesFactor: Computation of Bayes Factors for Common Designs. [Пакет R] URL: https://cran.r-project.org/src/contrib/Archive/BayesFactor/ (дата обращения: 1 февраля 2024 г.).
  19. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL: http://www.r-project.org/ (дата обращения: 23 июля 2022 г.).
  20. Razygraev A. V. 2023. Catalase enzymatic activity in adult mosquitoes (Diptera: Culicidae): taxonomic distribution of the continuous trait suggests its relevance for phylogeny research. Zootaxa 5339 (2): 159–176. https://doi.org/10.11646/zootaxa.5339.2.3
  21. Renshaw M. 1991. Population Dynamics and Ecology of Aedes cantans (Diptera: Culicidae) in England (Doctoral dissertation, University of Liverpool). 186 p.
  22. Service M. W. 1972. Techniques used in studying the population dynamics of Aedes cantans (Meigen) Diptera: Culicidae. Wiadomości Parazytologiczne 18 (4–6): 783–788.
  23. Service M. W. 1977. Ecological and biological studies on Aedes cantans (Meig.) (Diptera: Culicidae) in southern England. Journal of Applied Ecology 14 (1): 159–196. https://doi.org/10.2307/2401833
  24. Schoenfeld D. 1982. Partial residuals for the proportional hazards regression model. Biometrika 69 (1): 239–241. https://doi.org/10.1093/biomet/69.1.239
  25. Sun J., Yang S. 2022. Package ‘YPmodel’ [Пакет R] URL: https://cran.r-project.org/web/packages/YPmodel/YPmodel.pdf (дата обращения: 1 января 2024 г.).
  26. Therneau T. M., Lumley T., Atkinson E., Crowson C. 2023. Package ‘survival’. [Пакет R] URL: http://brieger.esalq.usp.br/CRAN/web/packages/survival/survival.pdf (дата обращения: 23 декабря 2023).
  27. Wilkerson R. C., Linton Y. M., Strickman D. 2021. Mosquitoes of the World. Baltimore: Johns Hopkins University Press, 1308 p.
  28. Yang S., Prentice R. 2005. Semiparametric analysis of short-term and long-term hazard ratios with two-sample survival data. Biometrika 92 (1): 1–17. https://doi.org/10.1093/biomet/92.1.1

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Container for keeping adult mosquitoes. 1 - a row of ventilation holes; 2 - a wide, tightly screwed lid (bottom of the container); 3 - a moistened cotton pad of a smaller diameter (without adding sucrose, at the bottom inside the container); 4 - a fragment of a cotton pad, moistened with the addition of sucrose, embedded in a hole in the wall of the container.

Download (293KB)
3. Fig. 2. Survival curves (Kaplan–Meier curves) obtained for the adults of Aedes communis (De Geer) and A. cantans (Meigen). 1 and 2 — survival curves of males (n = 7) and females (n = 10) of A. communis, respectively; 3LP and 4LP — survival curves of male (n = 17) and female (n = 13) A. cantans adults, respectively, developed from larvae and pupae collected in the wild; 3E and 4E — survival curves of male (n = 8) and female (n = 9) A. cantans adults, respectively, developed from embryos in laboratory conditions.

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences