PLASMA OF THE LIGHTNING CONDUCTING CHANNEL AT THE STAGE OF SMALL CURRENTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The nature of lightning plasma evolution at the low-current stage in the interval between a stepped leader and a return stroke or between a return stroke and a dart leader of the next lightning flash is analyzed. It is shown that a typical time to establish the equilibria in the plasma under consideration is small compared to a typical time of slow stages of lightning. Therefore, a local thermodynamic equilibrium is established in the plasma of the conductive channel at a slow stage of its electrons, and the temperature of electrons and atoms is identical. According to the gas dynamic model, a typical time of plasma relaxation after a return stroke of the order of 1 ms is small compared to the duration of the slow stage (about 50 ms), so that an external electric field is required to maintain the plasma at a slow stage, which creates a weak electric current which stabilizes the plasma of the conductive channel. Taking into account the results of numerical models for the relaxation of the plasma of a return stroke, the parameters of heat transfer are determined, which are related to the thermal conductivity of the plasma inside the conductive channel, mainly due to the transfer of dissociative energy and thermal conductivity of electrons. At the boundary of the lightning conducting channel, heat transfer occurs as a result of the convection of surrounding air, which leads to the formation of tongues and vortices, the size of which is about 10 cm. As a result, the total renew of hot air of the conductive channel with cold air proceeds due to convection at the temperature of 7 kK during about 40 ms.

About the authors

B. M Smirnov

Joint Institute for High temperatures of RAS

Email: bmsmirnov@gmail.com
Moscow, Russia

References

  1. Uman M.A. Lightning. New York: McGrow Hill, 1969.
  2. Uman M.A. The Lightning Discharge. New York: Academic Press, 1987.
  3. Bazelyan E.M., and Raizer Yu.P. Lightning Physics and Lightning Protection. Bristol: IOP Publ., 2000.
  4. Rakov V.A., and Uman M.A. Lightning, Physics and Effects. Cambridge: Cambrige Univ. Press, 2003.
  5. Райзер Ю.П. Физика газового разряда. Долгопрудный: Интеллект, 2009.
  6. Cooray V. An Introduction to Lightning. Dordrecht: Springer, 2015.
  7. Rakov V.A. Fundamental of Lightning. Cambridge: Cambrige Univ. Press, 2016.
  8. Mazur V. Principles of Lightning Physics. Bristol: IOP Publishing, 2016.
  9. Смирнов Б.М. // УФН. 2014. Т. 184. С.1153.
  10. Paxton A.H., Gardner R.L., and Bake L. // Phys. Fluids. 1986. V. 29. P. 2736.
  11. Aleksandrov N.L, Bazelyan E.M., and Shneider M.N. // Plasma Phys. Rep. 2000. V. 26. P. 893.
  12. Bocharov A.N., Mareev E.A., and Popov N.A. // J. Phys. D. Appl. Phys. 2022. V. 55. P. 115204.
  13. Бочаров А.Н., Мареев Е.А., Попов Н.А. // Физика плазмы. 2024. Т. 50. С. 340.
  14. Смирнов Б.М. // ЖЭТФ. 2024. Т. 166. С. 727.
  15. Aleksandrov N.L., Bazelyan E.M., and Kochetov I.V. // J. Phys. D: Appl. Phys. 1997. V. 30. P. 1616.
  16. Popov N.A. // Plasma Phys. Rep. 2003. V. 29. P. 695.
  17. Смирнов Б.М. Атомные столкновения и элементарные процессы в плазме. М.: Атомиздат, 1968.
  18. Nikitin E.E., and Umanski S.Ja. Theory of Slow Atomic Collisions. Berlin: Springer, 1984.
  19. Hess V.F. // Phys. Zs. 1912. T. 113. S. 1084.
  20. Wilson C.T.R. // J. Franklin Inst. 1929. V. 208. P. 1.
  21. Френкель Я.И. Теория явления атмосферного электричества. Ленинград: ГИТТЛ, 1949.
  22. Смирнов Б.М. // ЖЭТФ. 2023. Т. 163. С. 873.
  23. Смирнов Б.М. // УФН. 2000. Т. 170. С. 495.
  24. Latham J., and Stromberg I.M. Lightning / Ed. by R.H. Golde. London: Acad. Press, 1977. P. 99.
  25. Smirnov B.M. Global Energetics of the Atmosphere. Cham, Switzerland: Springer Nature, 2021.
  26. Williams E. // Atmosph. Res. 2009. V. 91. P. 140.
  27. Bazilevskaya G.A., Krainev M.B., and Makhmutov V.S. // J. Atmosph. Solar-Terrestrial Phys. 2000. V. 62. P. 1577.
  28. Bazilevskaya G.A. // Space Sci. Rev. 2000. V. 94. P. 25.
  29. Dwyer J.R., and Uman M.A. // Phys. Rep. 2014. V. 534. P. 147.
  30. Orville R.E. // J. Atmosph. Sci. 1968. V. 25. P. 852.
  31. Kittel Ch. Introduction to Solid State Physics. New York: Wiley, 1986.
  32. Dutton J. // J. Chem. Phys. Ref. Data. 1975. V. 4. P. 577.
  33. Spitzer L. Physics of Fully Ionized Gases. New York: Wiley, 1962.
  34. Aleksandrov N.L., Bazelyan E.M., and Konchakov A.M. // Plasma Phys. Rep. 2001. V. 27. P. 875.
  35. Chapman S., and Cowling T.G. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambrige Univ. Press, 1952.
  36. Capitelli M., Bruno D., and Laricchiuta A. Fundamental Aspects of Plasma Chemical Physics. Transport. New York: Springer, 2013.
  37. Smirnov B.M. Reference Data on Atomic Physics and Atomic Processes. Heidelberg: Springer, 2008.
  38. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972.
  39. Варгафтик Н.Б., Филиппов Л.П., Тарзиманов А.А., Тоцкий Е.Е. Справочник по теплопроводностям жидкостей и газов. М.: Энергоатомиздат, 1990.
  40. Smirnov B.M. Fundamentals of Ionized Gases. Weinheim: Wiley, 2012.
  41. Смирнов Б.М. Введение в физзику плазмы. М.: Наука, 1975.
  42. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988.
  43. Хаппель Дж., Бреннер Г. Гидродинамика при малых числах Рейнолдса. М.: Мир, 1976.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences