Effect of prolonged annealing on the morphology and optical properties of ZnO films produced by magnetron sputtering

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The effect of annealing time on the structural and optical properties of ZnO films, which are formed from Zn films obtained by magnetron sputtering followed by oxidation in air, is described. Thermal oxidation in air was carried out for 7 and 24 hours, respectively, in a programmable muffle furnace at T = 750°C. A change in the structure of the film surface depending on the annealing time of the Zn film and the substrate material was found, which manifests itself in the optical properties of the films.

作者简介

V. Tomaev

St. Petersburg State Institute of Technology; St. Petersburg Mining University

编辑信件的主要联系方式.
Email: tvaza@mail.ru
Russia, 190013, St. Petersburg; Russia, 199106, St. Petersburg

V. Polishchuk

Admiral Makarov State University of Maritime and Inland Shiping

Email: tvaza@mail.ru
Russia, 198035, Saint-Petersburg

N. Leonov

National Research University ITMO

Email: tvaza@mail.ru
Russia, 197101, St. Petersburg

T. Vartanyan

National Research University ITMO

Email: tvaza@mail.ru
Russia, 197101, St. Petersburg

参考

  1. Özgür Ü., Alivov Ya. I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 041301.
  2. Morkoç H., Özgür Ü. Zinc oxide: fundamentals, materials and device technology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009. 490 p.
  3. Singh A., Vishwakarma H.L. // IOSR-JAP. 2014. V. 6. No. 2. Ver. II. P. 28.
  4. Özgür Ü., Hofstetter D., Morkoç H. // Proc. IEEE. 2010. V. 98. No. 7. P. 1255.
  5. Rashmi R.K., Deepak .P, Saurabh K.P. // Res. Develop. Mater. Sci. V. 3. No. 3. P. 265.
  6. Ellmer K., Klein A., Rech B. Transparent conductive zinc oxide. Springer series in materials science 104. Berlin Heidelberg: Springer-Verlag, 2008. 32 p.
  7. Parihar V., Raja M., Paulose R. // Rev. Adv. Mater. Sci. 2018. V. 53. P. 119.
  8. Janotti A., Van de Walle C.G. // Rep. Prog. Phys. 2009. V. 72. P. 126501.
  9. Kulkarni S.S., Shirsat M.D. // IJARPS. 2015. V. 2. No. 1. P. 14.
  10. Nenavathu B.P., Sharma A., Dutta R.K. // J. Water Environ. Nanotechnol. 2018. V. 3(4). P. 289.
  11. Pranav Y.D., Kartik H.P., Kamlesh V.C. et al. // Proc. Technology. 2016. V. 23. P. 328.
  12. Damiani L.R., Mansano R.D. // J. Phys. Conf. Ser. 2012. V. 370. Art. No. 012019.
  13. Kuz'mina A.S., Kuz’mina M.Yu., Kuz’min M.P. // Mater. Sci. Forum Subm. 2019. V. 989. No. 10. P. 210.
  14. Balela M.D.L., Pelicano C.M.O., Ty J.D., Yanagi H. // Opt. Quant. Electron. 2017. V. 49. No. 3. 11 p.
  15. Hasnidawani J.N., Azlina H.N., Norita H. et al. // Proc. Chemistry. 2016. V. 19. P. 211.
  16. Abdullach K.A., Awad S., Zaraket J., Salame C. // Energy Proc. 2017. V. 119. P. 565.
  17. Fouad O.A., Ismail A.A., Zaki Z.I., Mohamed R.M. // Appl. Catalysis B. 2006. V. 62. P. 144.
  18. Hassan N.K., Hashim M.R. // Sains Malaysiana. 2013. V. 42. No. 2. P. 193.
  19. Dikovska A.Og., Atanasov P.A., Vasilev C. et al. // J. Optoelectron. Adv. Mater. 2005. V. 7. No. 3. P. 1329.
  20. Vincze A., Bruncko J., Michalka M., Figura D. // Central Europ. J. Phys. 2007. V. 5. No. 3. P. 385.
  21. John A., Ko H.-U., Kim D.-G., Kim J. // Cellulose. 2011. V. 18. P. 675.
  22. Habibi R., Daryan J.T., Rashidi A.M. // J. Exper. Nanosci. 2009. V. 4. No. 1. P. 35.
  23. Feng T.-H., Xia X.-C. // Opt. Mater. Express. 2016. V. 6. Art. No. 3735.
  24. Kelly P.J., Arnell R.D. // Vacuum. 2000. V. 56. P. 159.
  25. Rahman F. // Opt. Engin. 2019. V. 58(1). P. 010901.
  26. Guan N., Dai X., Babichev A.V. et al. // Chem. Sci. 2017. V. 8. P. 7904.
  27. Park G.C., Hwang S.M., Lee S.M. et al. // Sci. Reports. 2015. V. 5. P. 10410.
  28. Macaluso R., Lullo G., Crupi I. et al. // Electronics. 2020. V. 9. P. 991.
  29. Baratto C., Kumar R., Comini E. et al. // Opt. Express. 2015. V. 23. No. 15. P. 18937.
  30. Rauwel P., Salumaa M., Aasna A. et al. // J. Nanomaterials. 2016. V. 2016. Art. No. 5320625.
  31. Rodnyi P., Chernenko K., Klimova O. et al. // Radiat. Measurements. 2016. V. 90. P. 136.
  32. Rodnyi P.A., Chernenko K.A., Venevtsev I.D. // Opt. Spectrosc. 2018. V. 125. No. 3. P. 372.
  33. Janotti A., Van de Walle C.G. // Rep. Progr. Phys. 2009. V. 72. P. 126501.
  34. Zhang M., Averseng F., Krafft J.-M. et al. // J. Phys. Chem. C. 2020. V. 124. No. 23. P. 12696.
  35. Guo H.-L., Zhu Q., Wu X.-L. et al. // Nanoscale. 2015. V. 7. P. 7216.
  36. Chen L., Zhai B., Huang Y.M. // Catalysts. 2020. V. 10. P. 1163.
  37. Wang J., Xiang L., Komarneni S. // Ceram. Internat. 2018. V. 44. No. 7. P. 7357.
  38. Kröger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland Publ. Cj., 1964.
  39. Hauffe K., Reactionen in und an FestenStoffen, Berlin: Springer, 1955.
  40. Moore W.L., Williams E.L. // Discuss. Faraday Soc. 1959. V. 28. P. 86.
  41. Leonov N.B., Komissarov M.D., Parfenov P.S. et al. // Appl. Phys. A. 2022. V. 128. P. 665.
  42. Tomaev V.V., Polischuk V.A., Vartanyan T.A. et al. // Opt. Spectrosc. 2021. V. 129. No. 9. P. 1033.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (852KB)
3.

下载 (1MB)
4.

下载 (857KB)
5.

下载 (101KB)

版权所有 © В.В. Томаев, В.А. Полищук, Н.Б. Леонов, Т.А. Вартанян, 2023