Characteristics of a liquid metal flow generated by a travelling magnetic field in a hollow cylindrical channel and a channel with a coaxial insert

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The velocities of liquid metal and the processes of formation of the reversal vortex in different flow regimes in a hollow cylindrical channel and a cylindrical channel with an insert are compared. Velocity profiles and pressure drop – flow rate characteristic are obtained. It is shown that with the same intensity of electromagnetic force in the channel with an insert, the metal velocity and flow rate are higher than in the cylindrical channel due a to decrease the reversal vortex contribution.

About the authors

I. V. Kolesnichenko

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Email: kiv@icmm.ru
Perm, Russia

I. I. Mitropolit

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Perm, Russia

E. Golbraikh

Ben Gurion University of the Negev

Beersheba, Israel

References

  1. Вольдек А. И. Индукционные магнитотидродинамические машины с жидко металлическим рабочим телом. Л.: Энергия, 1970. 271 с.
  2. Брановер Г.Г., Цинобер А.Б. Магнитная гидродинамика несжимаемых сред. М.: Наука, 1970. 379 с.
  3. Cramer A., Pal J., Koal K. et al. // J. Cryst. Growth. 2011. V. 321. P. 142.
  4. Reddy K.S., Fauve S., Gissinger C. // Phys. Rev. Fluids. 2018. V. 3. No. 6. Art. No. 063703.
  5. Khalilov R., Kolesnichenko I. // Magnetohydrodynamics. 2015. V. 51. No. 1. P. 95.
  6. Архипов В.М. Техника работы с натрием на АЭС. М.: Энергоатомиздат, 1986. 136 с.
  7. Колесниченко Н.В., Халилов Р.Н., Шестаков А.В. и др. // Теплоэнергетика. 2023. № 3. С. 49.
  8. Geza V., Nacke B. // Magnetohydrodynamics. 2016. V. 52. P. 417.
  9. Ivanov S., Flerov A. // Magnetohydrodynamics. 2009. V. 45. P. 239.
  10. Колесниченко Н.В., Халилов Р.Н. // Вычисл. механ. сплошн. сред. 2022. Т. 15. № 4. С. 495.
  11. Araseki H., Kirillov I.R., Preslitsky G.V. // Nucl. Engin. Des. 2012. V. 243. P. 111.
  12. Denisov S., Dolgikh V., Khalilov R. et al. // Magnetohydrodynamics. 2013. V. 49. No. 1-2. P. 223.
  13. Golovenko E., Pavlov E., Kovalsky V. // Magnetohydrodynamics. 2011. V. 47. P. 105.
  14. Abdullina K.I., Bogovalov S.V., Zaikov Yu.P. // Ann. Nucl. Energ. 2018. V. 111. P. 118.
  15. Smolyanov I., Sarapulov F., Tarasov F. // Comput. Math. Appl. 2019. V. 78. P. 3187.
  16. Русских П.А., Болтачев Г.Ш., Паранин С.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 11. С. 1534
  17. Kolesnichenko I., Okarev R. // Eur. Phys. J. Plus. 2024. V. 139. No. 846.
  18. Khripchenko S., Khalilov R., Kolesnichenko I. // Magnetohydrodynamics. 2010. V. 46. P. 85.
  19. Denisov S., Dolgikh V., Khripchenko S., Kolesnichenko I. // Magnetohydrodynamics. 2016. V. 52. P. 25.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences