On the simplest solutions for the total magnetic energy in the convective zone of the Sun and the Earth
- Authors: Starchenko S.V1, Kotelnikova M.S2
-
Affiliations:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 89, No 7 (2025)
- Pages: 1138-1142
- Section: Magnetohydrodynamics
- URL: https://journals.eco-vector.com/0367-6765/article/view/696775
- DOI: https://doi.org/10.31857/S0367676525070201
- ID: 696775
Cite item
Abstract
Based on estimates of the characteristic values of the terms in the hydromagnetic dynamo equations, it is shown that for both planetary-type dynamo and solar dynamo, the stabilizing nonlinearity inversely proportional to the electric current value is significant. Using the average value obtained for it, the simplest hydromagnetic model for magnetic energy is constructed, consisting of one non-homogeneous linear ordinary differential equation.
Keywords
About the authors
S. V Starchenko
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of SciencesMoscow, Russia
M. S Kotelnikova
Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Email: kotelnikova@hydro.nsc.ru
Novosibirsk, Russia
References
- Braginsky S.I., Roberts P.H. // Geophys. Astrophys. Fluid Dynam. 1995. V. 79. No. 1–4. P. 1.
- Aubert J. // Geophys. J. Int. 2023. V. 235. No. 1. P. 468.
- Glatzmaier G.A., Roberts P.H. // Phys. Earth Planet. Inter. 1995. V. 91. No. 1–3. P. 63.
- Wicht J., Sanchez S. // Geophys. Astrophys. Fluid Dynam. 2019. V. 113. No. 1–2. P. 2.
- Warnecke J., Kapyla M.J. // Astron. Astrophys. 2020. V. 642. Art. No. A66.
- Cameron R.H., Dikpati M., Brandenburg A. // Space Sci. Rev. 2017. V. 210. P. 367.
- Charbonneau P. // Living Rev. Solar Phys. 2020. V. 17. Art. No. 4.
- Glatzmaier G.A. // J. Comput. Phys. 1984. V. 55. P. 461
- Brun A.S., Browning M.K. // Living Rev. Sol. Phys. 2017. V. 14. Art. No. 4.
- Struggner A., Beaudoin P., Brun A.S. et al. // Adv. Space Res. 2016. V. 58. No. 8. P. 1538.
- Krause F., Radler K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980.
- Рузмайкин А.А., Старченко С.В. // Teovarh. и аэропом. 1988. T. 28. № 3. С. 475.
- Schrinner M., Radler K.-H., Schmitt D. et al. // Geophys. Astrophys. Fluid Dynam. 2007. V. 101. No. 2. P. 81.
- Hughes D.W., Proctor M.R.E. // Phys. Rev. Lett. 2010. V. 104. Art. No. 024503.
- Kleeorin N., Rogachevskii I. // Phys. Rev. E. 1999. V. 59. P. 6724.
- Старченко С.В. // Teovarh. и аэропом. 2022. T. 62. № 2. С. 139
- Brandenburg A. // Lect. Notes Phys. 2005. V. 664. P. 219.
- Brandenburg A., Subramanian K. // Phys. Reports. 2005. V. 417. P. 1.
- Moffatt K., Dormy E. Self-exiting fluid dynamos. Cambridge: Cambridge University Press, 2020.
- Кичатинов Л.Л. // Письма в Астрон. журн. 2019. T. 45. № 1. С. 45
- Starchenko S.V. // Geophys. Astrophys. Fluid Dynam. 2019. V. 113. P. 71.
- Brandenburg A. // J. Plasma Phys. 2018. V. 84. No. 4. Art. No. 735840404.
- Starchenko S.V., Jones C.A. // Icarus. 2002. V. 157. P. 426.
- Brandenburg A., Sandin C. // Astron. Astrophys. 2004. V. 427. P. 13.
- Охлопков В.П., Стожков Ю.И. // Изв. РАН. Сер. физ. 2011. T. 75. № 6. С. 911
Supplementary files



