Characteristics of a liquid metal flow generated by a travelling magnetic field in a hollow cylindrical channel and a channel with a coaxial insert
- Authors: Kolesnichenko I.V.1, Mitropolit I.I.1, Golbraikh E.2
-
Affiliations:
- Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
- Ben Gurion University of the Negev
- Issue: Vol 89, No 7 (2025)
- Pages: 1123-1129
- Section: Magnetohydrodynamics
- URL: https://journals.eco-vector.com/0367-6765/article/view/696773
- DOI: https://doi.org/10.31857/S0367676525070181
- ID: 696773
Cite item
Abstract
The velocities of liquid metal and the processes of formation of the reversal vortex in different flow regimes in a hollow cylindrical channel and a cylindrical channel with an insert are compared. Velocity profiles and pressure drop – flow rate characteristic are obtained. It is shown that with the same intensity of electromagnetic force in the channel with an insert, the metal velocity and flow rate are higher than in the cylindrical channel due a to decrease the reversal vortex contribution.
About the authors
I. V. Kolesnichenko
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
Email: kiv@icmm.ru
Perm, Russia
I. I. Mitropolit
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of SciencesPerm, Russia
E. Golbraikh
Ben Gurion University of the NegevBeersheba, Israel
References
- Вольдек А. И. Индукционные магнитотидродинамические машины с жидко металлическим рабочим телом. Л.: Энергия, 1970. 271 с.
- Брановер Г.Г., Цинобер А.Б. Магнитная гидродинамика несжимаемых сред. М.: Наука, 1970. 379 с.
- Cramer A., Pal J., Koal K. et al. // J. Cryst. Growth. 2011. V. 321. P. 142.
- Reddy K.S., Fauve S., Gissinger C. // Phys. Rev. Fluids. 2018. V. 3. No. 6. Art. No. 063703.
- Khalilov R., Kolesnichenko I. // Magnetohydrodynamics. 2015. V. 51. No. 1. P. 95.
- Архипов В.М. Техника работы с натрием на АЭС. М.: Энергоатомиздат, 1986. 136 с.
- Колесниченко Н.В., Халилов Р.Н., Шестаков А.В. и др. // Теплоэнергетика. 2023. № 3. С. 49.
- Geza V., Nacke B. // Magnetohydrodynamics. 2016. V. 52. P. 417.
- Ivanov S., Flerov A. // Magnetohydrodynamics. 2009. V. 45. P. 239.
- Колесниченко Н.В., Халилов Р.Н. // Вычисл. механ. сплошн. сред. 2022. Т. 15. № 4. С. 495.
- Araseki H., Kirillov I.R., Preslitsky G.V. // Nucl. Engin. Des. 2012. V. 243. P. 111.
- Denisov S., Dolgikh V., Khalilov R. et al. // Magnetohydrodynamics. 2013. V. 49. No. 1-2. P. 223.
- Golovenko E., Pavlov E., Kovalsky V. // Magnetohydrodynamics. 2011. V. 47. P. 105.
- Abdullina K.I., Bogovalov S.V., Zaikov Yu.P. // Ann. Nucl. Energ. 2018. V. 111. P. 118.
- Smolyanov I., Sarapulov F., Tarasov F. // Comput. Math. Appl. 2019. V. 78. P. 3187.
- Русских П.А., Болтачев Г.Ш., Паранин С.Н. // Изв. РАН. Сер. физ. 2023. Т. 87. № 11. С. 1534
- Kolesnichenko I., Okarev R. // Eur. Phys. J. Plus. 2024. V. 139. No. 846.
- Khripchenko S., Khalilov R., Kolesnichenko I. // Magnetohydrodynamics. 2010. V. 46. P. 85.
- Denisov S., Dolgikh V., Khripchenko S., Kolesnichenko I. // Magnetohydrodynamics. 2016. V. 52. P. 25.
Supplementary files



