On the simplest solutions for the total magnetic energy in the convective zone of the Sun and the Earth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Based on estimates of the characteristic values of the terms in the hydromagnetic dynamo equations, it is shown that for both planetary-type dynamo and solar dynamo, the stabilizing nonlinearity inversely proportional to the electric current value is significant. Using the average value obtained for it, the simplest hydromagnetic model for magnetic energy is constructed, consisting of one non-homogeneous linear ordinary differential equation.

About the authors

S. V Starchenko

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia

M. S Kotelnikova

Lavrentyev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences

Email: kotelnikova@hydro.nsc.ru
Novosibirsk, Russia

References

  1. Braginsky S.I., Roberts P.H. // Geophys. Astrophys. Fluid Dynam. 1995. V. 79. No. 1–4. P. 1.
  2. Aubert J. // Geophys. J. Int. 2023. V. 235. No. 1. P. 468.
  3. Glatzmaier G.A., Roberts P.H. // Phys. Earth Planet. Inter. 1995. V. 91. No. 1–3. P. 63.
  4. Wicht J., Sanchez S. // Geophys. Astrophys. Fluid Dynam. 2019. V. 113. No. 1–2. P. 2.
  5. Warnecke J., Kapyla M.J. // Astron. Astrophys. 2020. V. 642. Art. No. A66.
  6. Cameron R.H., Dikpati M., Brandenburg A. // Space Sci. Rev. 2017. V. 210. P. 367.
  7. Charbonneau P. // Living Rev. Solar Phys. 2020. V. 17. Art. No. 4.
  8. Glatzmaier G.A. // J. Comput. Phys. 1984. V. 55. P. 461
  9. Brun A.S., Browning M.K. // Living Rev. Sol. Phys. 2017. V. 14. Art. No. 4.
  10. Struggner A., Beaudoin P., Brun A.S. et al. // Adv. Space Res. 2016. V. 58. No. 8. P. 1538.
  11. Krause F., Radler K.-H. Mean-Field Magnetohydrodynamics and Dynamo Theory, Oxford: Pergamon, 1980.
  12. Рузмайкин А.А., Старченко С.В. // Teovarh. и аэропом. 1988. T. 28. № 3. С. 475.
  13. Schrinner M., Radler K.-H., Schmitt D. et al. // Geophys. Astrophys. Fluid Dynam. 2007. V. 101. No. 2. P. 81.
  14. Hughes D.W., Proctor M.R.E. // Phys. Rev. Lett. 2010. V. 104. Art. No. 024503.
  15. Kleeorin N., Rogachevskii I. // Phys. Rev. E. 1999. V. 59. P. 6724.
  16. Старченко С.В. // Teovarh. и аэропом. 2022. T. 62. № 2. С. 139
  17. Brandenburg A. // Lect. Notes Phys. 2005. V. 664. P. 219.
  18. Brandenburg A., Subramanian K. // Phys. Reports. 2005. V. 417. P. 1.
  19. Moffatt K., Dormy E. Self-exiting fluid dynamos. Cambridge: Cambridge University Press, 2020.
  20. Кичатинов Л.Л. // Письма в Астрон. журн. 2019. T. 45. № 1. С. 45
  21. Starchenko S.V. // Geophys. Astrophys. Fluid Dynam. 2019. V. 113. P. 71.
  22. Brandenburg A. // J. Plasma Phys. 2018. V. 84. No. 4. Art. No. 735840404.
  23. Starchenko S.V., Jones C.A. // Icarus. 2002. V. 157. P. 426.
  24. Brandenburg A., Sandin C. // Astron. Astrophys. 2004. V. 427. P. 13.
  25. Охлопков В.П., Стожков Ю.И. // Изв. РАН. Сер. физ. 2011. T. 75. № 6. С. 911

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences