Induction sensor for control of boundary position and medium electrical conductivity
- Autores: Bondarenko A.A.1,2, Eltishchev V.A.1, Kolesnichenko I.V.1
-
Afiliações:
- Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences
- Perm National Research Polytechnic University
- Edição: Volume 89, Nº 7 (2025)
- Páginas: 1130-1137
- Seção: Magnetohydrodynamics
- URL: https://journals.eco-vector.com/0367-6765/article/view/696774
- DOI: https://doi.org/10.31857/S0367676525070197
- ID: 696774
Citar
Texto integral
Resumo
We presented an induction sensor for controlling the boundary and conductivity of the medium. A refined mathematical model of the device is given. The dependencies of the sensor signal on the distance to the electrically conductive cylinder and on the position of its upper boundary are obtained experimentally and numerically. The behaviour of the system response on media with different electrical conductivity: copper, duralumin, stainless steel and lead-tin cylinders with different mass fraction of copper powder is studied.
Sobre autores
A. Bondarenko
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences; Perm National Research Polytechnic University
Email: bondarenko.a@icmm.ru
Perm, Russia
V. Eltishchev
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of SciencesPerm, Russia
I. Kolesnichenko
Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of SciencesPerm, Russia
Bibliografia
- Kudermann G. // Z. Analyt. Chem. 1988. V. 331. P. 697.
- Zurner T., Ratajczak M., Wondrak T., Eckert S. // Meas. Sci. Technol. 2017. V. 28. No. 11. Art. No. 115301.
- Лосев Г.Л., Ельпищев В.А. // Вестн. Пермск. ун- та. Физика. 2020. № 4. С. 63.
- Козлов Ф.А., Волчков Л.Г., Кузнецов Э.К., Матихий В.В. Жидкометаллические теплоносители ЯЭУ. Очистка от примесей и их контроль. М.: Энергоатомизация, 1983. 128 с.
- Арнольдов М.Н., Ивановский М.Н., Субботин В.И., Шматко Б.А. // ТВТ. 1967. Т. 5. № 5. С. 812.
- Davidson Р.А., Lindsey R.I. // J. Fluid Mech. 1998. V. 362. P. 273.
- Krauter N., Eckert S., Gundrum T. et al. // Metall. Mater. Trans. B. 2018. V. 49. No. 4. P. 2089.
- Kelley D.H., Weier T. // Appl. Mech. Rev. 2018. V. 70. No. 2. Art. No. 020801.
- Kudermann G., Blaujub K.H., Lührs C. et al. // Fresenius J. Analyt. Chem. 1992. V. 343. P. 734.
- Sun Z.J., Okafor K., Isa S. // Appl. Radiat. Isotop. 2017. V. 127. P. 173.
- Москвин Л.Н., Булатов М.И., Ганеев А.А., Дробышев А.И. Аналитическая химия. Методы идентификации и определения веществ. М.: Изд-во «Лань», 2022. С. 584.
- Подымова Н.Б., Соколовская Ю.Г. // Изв. РАН. Сер. физ. 2022. Т. 86. № 11. С. 1622
- Toasa Caiza P.D., Schwendemann R., Calero P., Ummenhofer T. // J. Nondestruct. Eval. 2021. V. 40. Art. No. 63.
- Elitshchev V., Losev G., Kolesnichenko I. // Magnetohydrodynamics. 2021. V. 57. No. 1. P. 41.
- Elitshchev V., Losev G., Kolesnichenko I., Frick P. // Exp. Fluids. 2022. V. 63. No. 8. Art. No. 127.
- Elitshchev V., Losev G., Frick P. // Phys. Rev. Fluids. 2024. V. 9. No. 8. Art. No. 083702
- Лосев Г.Л., Ельпищев В.А. // Вестн. Пермск. ун- та. Физика. 2023. № 1. С. 57.
- Elitshchev V., Mandrykin S., Kolesnichenko I. // IOP Conf. Ser. Mater. Sci. Engin. 2020. V. 950. Art. No. 012014.
- Birо´O., Preis K. // IEEE Trans. Magn. 1989. V. 25. No. 4. P. 3145.
Arquivos suplementares


