Induction sensor for control of boundary position and medium electrical conductivity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We presented an induction sensor for controlling the boundary and conductivity of the medium. A refined mathematical model of the device is given. The dependencies of the sensor signal on the distance to the electrically conductive cylinder and on the position of its upper boundary are obtained experimentally and numerically. The behaviour of the system response on media with different electrical conductivity: copper, duralumin, stainless steel and lead-tin cylinders with different mass fraction of copper powder is studied.

About the authors

A. A. Bondarenko

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences; Perm National Research Polytechnic University

Email: bondarenko.a@icmm.ru
Perm, Russia

V. A. Eltishchev

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Perm, Russia

I. V. Kolesnichenko

Institute of Continuous Media Mechanics of the Ural Branch of the Russian Academy of Sciences

Perm, Russia

References

  1. Kudermann G. // Z. Analyt. Chem. 1988. V. 331. P. 697.
  2. Zurner T., Ratajczak M., Wondrak T., Eckert S. // Meas. Sci. Technol. 2017. V. 28. No. 11. Art. No. 115301.
  3. Лосев Г.Л., Ельпищев В.А. // Вестн. Пермск. ун- та. Физика. 2020. № 4. С. 63.
  4. Козлов Ф.А., Волчков Л.Г., Кузнецов Э.К., Матихий В.В. Жидкометаллические теплоносители ЯЭУ. Очистка от примесей и их контроль. М.: Энергоатомизация, 1983. 128 с.
  5. Арнольдов М.Н., Ивановский М.Н., Субботин В.И., Шматко Б.А. // ТВТ. 1967. Т. 5. № 5. С. 812.
  6. Davidson Р.А., Lindsey R.I. // J. Fluid Mech. 1998. V. 362. P. 273.
  7. Krauter N., Eckert S., Gundrum T. et al. // Metall. Mater. Trans. B. 2018. V. 49. No. 4. P. 2089.
  8. Kelley D.H., Weier T. // Appl. Mech. Rev. 2018. V. 70. No. 2. Art. No. 020801.
  9. Kudermann G., Blaujub K.H., Lührs C. et al. // Fresenius J. Analyt. Chem. 1992. V. 343. P. 734.
  10. Sun Z.J., Okafor K., Isa S. // Appl. Radiat. Isotop. 2017. V. 127. P. 173.
  11. Москвин Л.Н., Булатов М.И., Ганеев А.А., Дробышев А.И. Аналитическая химия. Методы идентификации и определения веществ. М.: Изд-во «Лань», 2022. С. 584.
  12. Подымова Н.Б., Соколовская Ю.Г. // Изв. РАН. Сер. физ. 2022. Т. 86. № 11. С. 1622
  13. Toasa Caiza P.D., Schwendemann R., Calero P., Ummenhofer T. // J. Nondestruct. Eval. 2021. V. 40. Art. No. 63.
  14. Elitshchev V., Losev G., Kolesnichenko I. // Magnetohydrodynamics. 2021. V. 57. No. 1. P. 41.
  15. Elitshchev V., Losev G., Kolesnichenko I., Frick P. // Exp. Fluids. 2022. V. 63. No. 8. Art. No. 127.
  16. Elitshchev V., Losev G., Frick P. // Phys. Rev. Fluids. 2024. V. 9. No. 8. Art. No. 083702
  17. Лосев Г.Л., Ельпищев В.А. // Вестн. Пермск. ун- та. Физика. 2023. № 1. С. 57.
  18. Elitshchev V., Mandrykin S., Kolesnichenko I. // IOP Conf. Ser. Mater. Sci. Engin. 2020. V. 950. Art. No. 012014.
  19. Birо´O., Preis K. // IEEE Trans. Magn. 1989. V. 25. No. 4. P. 3145.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences