CLASSICAL SOLUTION OF THE FIRST MIXED PROBLEM FOR THE INHOMOGENEOUS LIOUVILLE EQUATION IN A HALF-STRIP
- 作者: Korzyuk V.I1,2, Rudzko J.V2
-
隶属关系:
- Belarusian State University
- Institute of Mathematics of the National Academy of Sciences of Belarus
- 期: 卷 61, 编号 9 (2025)
- 页面: 1155-1166
- 栏目: PARTIAL DERIVATIVE EQUATIONS
- URL: https://journals.eco-vector.com/0374-0641/article/view/691480
- DOI: https://doi.org/10.7868/S3034503025090012
- ID: 691480
如何引用文章
详细
The question of existence and uniqueness of the classical solution of the mixed problem in a half-strip for the nonlinear Liouville equation is investigated. The solution is presented in implicit form as a solution of an integral equation, the solvability of which is proved using the Leray-Schauder theorem, and the corresponding a priori estimate is obtained using energy methods.
作者简介
V. Korzyuk
Belarusian State University; Institute of Mathematics of the National Academy of Sciences of Belarus
Email: korzyuk@bsu.by
Minsk, Belarus
J. Rudzko
Institute of Mathematics of the National Academy of Sciences of Belarus
Email: janycz@yahoo.com
Minsk, Belarus
参考
- Nakayama, Y. Liouville field theory: a decade after the revolution / Y. Nakayama // Int. J. Mod. Phys. A. — 2004. — V. 19, № 17–18. — P. 2771–2930.
- Dzhordzhadze, G.P. Singular solutions of the equation □φ + (m²/2) exp φ = 0 and dynamics of singularities / G.P. Dzhordzhadze, A.K. Pogrebkov, M.K. Polivanov // Theor. Math. Phys. — 1979. — V. 40. — P. 706–715.
- Джорджадзе, Г.П. О глобальных решениях задачи Коши для уравнения Лиувилля φ_{tt}(t,x) - φ_{xx}(t,x) = 1/2m exp φ(t,x) / Г.П. Джорджадзе, А.К. Погребков, М.К. Поливанов // Докл. АН СССР. — 1978. — Т. 243, № 2. — С. 318–320.
- Погребков, А.К. О глобальных решениях задач Коши для уравнения Лиувилля φ_{tt} - φ_{xx} = -1/2m² exp φ в случае сингулярных начальных данных / А.К. Погребков // Докл. АН СССР. — 1979. — Т. 244, № 4. — С. 873–876.
- Dzhordzhadze, G.P. Regular solutions of the Liouville equation / G.P. Dzhordzhadze // Theor. Math. Phys. — 1979. — V. 41. — P. 867–871.
- Жегалов, В.И. О характеристических граничных задачах для уравнения Лиувилля / В.И. Жегалов, А.А. Купгурцев // Изв. вузов. Математика. — 2008. — № 11. — С. 40–47.
- Andreev, V.A. Application of the inverse scattering method to the equation σ_{xt} = e^{σ} / V.A. Andreev // Theor. Math. Phys. — 1976. — V. 29. — P. 1027–1032.
- Korzyuk, V.I. Classical and mild solutions of the Cauchy problem for a mildly quasilinear wave equation with discontinuous and distributional initial conditions / V.I. Korzyuk, J.V. Rudzko // J. Math. Sci. — 2024. — V. 286, № 4. — P. 535–559.
- Kharibegashvili, S.S. Cauchy problem for a generalized nonlinear Liouville equation / S.S. Kharibegashvili, O.M. Dzhokhadze // Differ. Equat. — 2011. — V. 47, № 12. — P. 1763–1775.
- Калякин, Л.А. Асимптотический распад решения возмущенного уравнения Лиувилля / Л.А. Калякин // Мат. заметки. — 2000. — Т. 68, № 2. — С. 195–209.
- Калякин, Л.А. Возмущение сингулярного решения уравнения Лиувилля / Л.А. Калякин // Теор. и мат. физика. — 1999. — Т. 118, № 3. — С. 390–397.
- Kalyakin, L.A. Liouville equation under perturbation / L.A. Kalyakin // Inverse Problems. — 2001. — V. 17, № 4. — P. 879–883.
- Mitrinovic, D.S., Inequalities Involving Functions and Their Integrals and Derivatives / D.S. Mitrinovic, J.E. Pečarić, A.M. Fink. — Dordrecht : Kluwer Academic Publishers, 1991. — 603 p.
- Корзюк, В.И. Уравнения математической физики / В.И. Корзюк. — 2-е изд., испр. и доп. — М. : Ленанд, 2021. — 480 с.
- Хромов, А.П. Расходящиеся ряды и обобщённая смешанная задача для волнового уравнения / А.П. Хромов // Изв. Саратов. ун-та. Нов. сер. Сер.: Математика. Механика. Информатика. — 2024. — Т. 24, № 3. — С. 351–358.
- Хромов, А.П. Расходящиеся ряды в методе Фурье для волнового уравнения / А.П. Хромов, В.В. Корнев // Тр. Ин-та математики и механики УрО РАН. — 2021. — Т. 27, № 4. — С. 215–238.
- Gilbarg, D. Elliptic Partial Differential Equations of Second Order / D. Gilbarg, N.S. Trudinger. — 2nd ed. — Berlin : Springer, 1983. — 529 p.
- Треногин, В.А. Функциональный анализ / В.А. Треногин. — 3-е изд., испр. — М. : Физматлит, 2002. — 488 с.
- Корзюк, В.И. Классическое решение задачи Коши для полулинейного гиперболического уравнение в случае двух независимых переменных / В.И. Корзюк, Я.В. Рудько // Изв. вузов. Математика. — 2024. — № 3. — С. 50–63.
补充文件
