LOCAL COMPUTATIONAL ALGORITHMS FOR THE SYSTEM OF FIRST-ORDER EQUATIONS WITH MEMORY EFFECTS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

We consider the Cauchy problem for a system of integro-differential equations of the first order with difference kernels in finite-dimensional Hilbert spaces. This class of equations arises in the mathematical modeling of a wide range of nonstationary processes taking into account memory effects, including, in particular, the system of Maxwell's equations. For numerical solution, a method of reducing the original nonlocal problem to an equivalent system of local differential equations of the first order on the basis of approximation of kernels by a finite sum of exponential functions is proposed. Two-level operator-difference schemes are proposed, for which the stability of the initial data and the right-hand side is analyzed. The performed theoretical analysis demonstrates the correctness of the proposed approach.

作者简介

A. Alikhanov

North Caucasus Federal University

Email: aalikhanov@ncfu.ru
Stavropol, Russia

P. Vabishchevich

Lomonosov Moscow State University

Email: vab@cs.msu.ru
Russia

参考

  1. Gripenberg, G. Volterra Integral and Functional Equations / G. Gripenberg, S.-O. Londen, O. Staffans. — Cambridge : Cambridge University Press, 1990. — 725 p.
  2. Prüss, J. Evolutionary Integral Equations and Applications / J. Prüss. — Basel ; Boston : Birkhäuser, 1993. — 366 p.
  3. Knabner, P. Numerical Methods for Elliptic and Parabolic Partial Differential Equations / P. Knabner, L. Angermann. — New York etc. : Springer, 2003. — 439 p.
  4. Quarteroni, A. Numerical Approximation of Partial Differential Equations / A. Quarteroni, A. Valli. — Berlin : Springer, 1994. — 543 p.
  5. Bellen, A. Numerical Methods for Delay Differential Equations / A. Bellen, Z. Marino. — Oxford : Oxford University Press, 2003. — 410 p.
  6. Podlubny, I. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications / I. Podlubny. — Elsevier, 1998. — 340 p.
  7. Chen, C. Finite Element Methods for Integrodifferential Equations / C. Chen, T. Shih. — World Scientific, 1998. — 292 p.
  8. Linz, P. Analytical and Numerical Methods for Volterra Equations / P. Linz. — Philadelphia : SIAM, 1985. — 240 p.
  9. Vabishchevich, P.N. Numerical solution of the Cauchy problem for Volterra integrodifferential equations with difference kernels / P.N. Vabishchevich // Appl. Num. Math. — 2022. — V. 174. — P. 177–190.
  10. Vabishchevich, P.N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory / P.N. Vabishchevich // J. Comput. Appl. Math. — 2023. — V. 422. — Art. 114887.
  11. Вабищевич, П. Н. Численное решение задачи Коши для интегро-дифференциального уравнения второго порядка / П. Н. Вабищевич // Дифференц. уравнения. — 2022. — Т. 58, № 7. — С. 912–920.
  12. Alikhanov, A.A. A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application / A.A. Alikhanov, M.S. Asl, D. Li // Computers and Mathematics with Applications. — 2024. — V. 175. — P. 330–344.
  13. Ландау, Л.Д. Теоретическая физика : учеб. пособие для вузов : в 10 т. Т. 8. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. — 4-е изд., стереотип. — М. : Физматлит, 2005. — 656 с.
  14. Halanay, A. On the asymptotic behavior of the solutions of an integro-differential equation / A. Halanay // J. Math. Anal. Appl. — 1965. — V. 10, № 2. — P. 319–324.
  15. Самарский, A.A. Теория разностных схем / A.A. Самарский. — 3-е изд., испр. — М. : Наука, 1989. — 616 с.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025