LOCAL COMPUTATIONAL ALGORITHMS FOR THE SYSTEM OF FIRST-ORDER EQUATIONS WITH MEMORY EFFECTS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

We consider the Cauchy problem for a system of integro-differential equations of the first order with difference kernels in finite-dimensional Hilbert spaces. This class of equations arises in the mathematical modeling of a wide range of nonstationary processes taking into account memory effects, including, in particular, the system of Maxwell's equations. For numerical solution, a method of reducing the original nonlocal problem to an equivalent system of local differential equations of the first order on the basis of approximation of kernels by a finite sum of exponential functions is proposed. Two-level operator-difference schemes are proposed, for which the stability of the initial data and the right-hand side is analyzed. The performed theoretical analysis demonstrates the correctness of the proposed approach.

Авторлар туралы

A. Alikhanov

North Caucasus Federal University

Email: aalikhanov@ncfu.ru
Stavropol, Russia

P. Vabishchevich

Lomonosov Moscow State University

Email: vab@cs.msu.ru
Russia

Әдебиет тізімі

  1. Gripenberg, G. Volterra Integral and Functional Equations / G. Gripenberg, S.-O. Londen, O. Staffans. — Cambridge : Cambridge University Press, 1990. — 725 p.
  2. Prüss, J. Evolutionary Integral Equations and Applications / J. Prüss. — Basel ; Boston : Birkhäuser, 1993. — 366 p.
  3. Knabner, P. Numerical Methods for Elliptic and Parabolic Partial Differential Equations / P. Knabner, L. Angermann. — New York etc. : Springer, 2003. — 439 p.
  4. Quarteroni, A. Numerical Approximation of Partial Differential Equations / A. Quarteroni, A. Valli. — Berlin : Springer, 1994. — 543 p.
  5. Bellen, A. Numerical Methods for Delay Differential Equations / A. Bellen, Z. Marino. — Oxford : Oxford University Press, 2003. — 410 p.
  6. Podlubny, I. Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications / I. Podlubny. — Elsevier, 1998. — 340 p.
  7. Chen, C. Finite Element Methods for Integrodifferential Equations / C. Chen, T. Shih. — World Scientific, 1998. — 292 p.
  8. Linz, P. Analytical and Numerical Methods for Volterra Equations / P. Linz. — Philadelphia : SIAM, 1985. — 240 p.
  9. Vabishchevich, P.N. Numerical solution of the Cauchy problem for Volterra integrodifferential equations with difference kernels / P.N. Vabishchevich // Appl. Num. Math. — 2022. — V. 174. — P. 177–190.
  10. Vabishchevich, P.N. Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory / P.N. Vabishchevich // J. Comput. Appl. Math. — 2023. — V. 422. — Art. 114887.
  11. Вабищевич, П. Н. Численное решение задачи Коши для интегро-дифференциального уравнения второго порядка / П. Н. Вабищевич // Дифференц. уравнения. — 2022. — Т. 58, № 7. — С. 912–920.
  12. Alikhanov, A.A. A novel explicit fast numerical scheme for the Cauchy problem for integro-differential equations with a difference kernel and its application / A.A. Alikhanov, M.S. Asl, D. Li // Computers and Mathematics with Applications. — 2024. — V. 175. — P. 330–344.
  13. Ландау, Л.Д. Теоретическая физика : учеб. пособие для вузов : в 10 т. Т. 8. Электродинамика сплошных сред / Л.Д. Ландау, Е.М. Лифшиц. — 4-е изд., стереотип. — М. : Физматлит, 2005. — 656 с.
  14. Halanay, A. On the asymptotic behavior of the solutions of an integro-differential equation / A. Halanay // J. Math. Anal. Appl. — 1965. — V. 10, № 2. — P. 319–324.
  15. Самарский, A.A. Теория разностных схем / A.A. Самарский. — 3-е изд., испр. — М. : Наука, 1989. — 616 с.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025