Multidimensional Coherent Risk Measures and Their Properties
- Authors: Kulikov A.V.1, Volkov N.V.1
-
Affiliations:
- Moscow Institute of Physics and Technology
- Issue: Vol 61, No 3 (2025)
- Pages: 116-125
- Section: Mathematical analysis of economic models
- URL: https://journals.eco-vector.com/0424-7388/article/view/691410
- ID: 691410
Cite item
Abstract
Coherent risk measures are widely used in practice to calculate risk. Multidimensional coherent risk measures are important to use for companies and banks operating in different international markets. Here we introduce an example which clearly shows that multidimensional coherent risk measures reduce capital requirements on multi-asset or multi-currency markets. In this paper we consider two different approaches to define multidimensional coherent risk measures. The first approach is based on a cone-based exchange rate set, whereas the second employs random sets to account for liquidity constraints and other market frictions. Also constructive approach for multidimensional risk measures using one-dimensional law invariant ones is considered. We introduce the example of coherent risk measure which cannot be represented by the constructive approach. Two important properties of multidimensional risk measures such as law invariance and space consistency are investigated and their equivalent properties in terms of determining set and acceptance set are given. Then we consider a multidimensional generalization of Tail VaR and show that it satisfies space consistency and law invariance properties and provide an example which shows that multidimensional portfolio risk estimation using this risk measure gives an adequate result. JEL Classification: C39, D81. UDC: 519.25. For reference: Kulikov A. V., Volkov N. V. (2025). Multidimensional coherent risk measures and their properties. Economics and Mathematical Methods, 61, 3, 116–125.
About the authors
A. V. Kulikov
Moscow Institute of Physics and Technology
Author for correspondence.
Email: avkulikov15@gmail.com
Dolgoprudny, Russia
N. V. Volkov
Moscow Institute of Physics and Technology
Email: nikita.v.volkov@phystech.edu
Dolgoprudny, Russia
References
- Acerbi C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of Banking and Finance, 26 (7), 1505–1518.
- Acerbi C., Tasche D. (2002). On the coherence of expected shortfall. Journal of Banking and Finance, 26 (7), 1487–1503.
- Artzner P., Delbaen F., Eber J.-M., Heath D. (1997). Thinking coherently. Risk, 10 (11), 68–71.
- Artzner P., Delbaen F., Eber J.-M., Heath D. (1999). Coherent measures of risk. Mathematical Finance, 9 (3), 203–228.
- Burgert C., Rüschendorf L. (2006). Consistent risk measures for portfolio vectors. Insurance: Mathematics and Economics, 38 (2), 289–297.
- Сascos I., Molchanov I. (2007). Multivariate risks and depth-trimmed regions. Finance and Stochastics, 11, 373–397.
- Сascos I., Molchanov I. (2016). Multivariate risk measures: A constructive approach based on selections. Mathematical Finance, 26 (4), 867–900.
- Cherny A. S. (2006a). Equilibrium with coherent risk. Working paper. Moscow: MSU. Available at: http://mech.math.msu.su/~cherny (in English as preprint). [Черный А. С. (2006a). Равновесие на основе когерентых мер риска. Рабочие материалы. М.: МГУ. Режим доступа: https://arxiv.org/pdf/math/0605051].
- Cherny A. S. (2006b). Weighted VaR and its properties. Finance and Stochastics, 10 (2), 367–393.
- Cherny A. S. (2007). Pricing with coherent risk. Theory of Probability and its Applications, 52 (3), 506–540. DOI: https://doi.org/10.1137/S0040585X97983158 (in English). [Черный А. С. (2007). Нахождение справедливой цены на основе когерент ных мер риска // Теория вероятностей и ее применения. Т. 52. № 3. C. 506–540 (на англ.).]
- Delbaen F. (2002). Coherent risk measures on general probability spaces. In: K. Sandmann, P. Schönbucher (eds.). “Advances in finance and stochastics”. Essays in honor of Dieter Sondermann. Berlin: Springer.
- Föllmer H., Schied A. (2002a). Convex measures of risk and trading constraints. Finance and Stochastics, 6 (4), 429–447.
- Föllmer H., Schied A. (2002b). Robust preferences and convex measures of risk. In: K. Sandmann P. Schönbucher (eds.). “Advances in finance and stochastics”. Essays in honor of Dieter Sondermann. Berlin: Springer.
- Hamel A. H., Heyde F. (2010). Duality for set-valued measures of risk. SIAM J. Financial Mathematics, 1, 66–95.
- Hamel A. H., Heyde F., Rudloff B. (2011). Set-valued risk measures for conical market models. Math. Financial Economics, 5, 1–28.
- Jouini E., Meddeb M., Touzi N. (2004). Vector-valued coherent risk measures. Finance and Stochastics, 8, 531–552.
- Jouini E., Schachermayer W., Touzi N. (2006). Law invariant risk measures have the Fatou property. Advances in Mathematical Economics, 9 (1), 49–71.
- Kabanov Y. M., Rasonyi M., Stricker C. (2002). No-arbitrage criteria for financial markets with efficient friction. Finance and Stochastics, 6 (3), 403–411.
- Kabanov Y. M., Stricker C. (2001). The harrison-pliska arbitrage pricing theorem under transaction costs. Journal of Mathematical Economics, 35 (2), 185–196.
- Kulikov A. V. (2008a). Multidimensional coherent and convex risk measures. Theory of Probability and its Applications, 52 (4), 614–635 (in Russian). [Куликов А. В. (2008a). Многомерные когерентные и выпуклые меры риска // Теория вероятностей и ее приложения. Т. 52. № 4. C. 614–635.]
- Kulikov A. V. (2008b). Multidimensional coherent risk measures and their application to the solution of financial mathematics tasks. Ph.d. thesis. Moscow: Moscow State University (in Russian). [Куликов А. В. (2008b). Многомерные когерентные меры риска и их применение к решению задач финансовой математики. Дис. канд. физ.-мат. наук. М.: МГУ.]
- Kunze M. (2003). Verteiligungsinvariante konvexe Risikomabe. Diplomarbeit. Berlin: Humbolt Universitat.
- Kusuoka S. (2001). On law invariant coherent risk measures. Advances in Mathematical Economics, 3, 83–95.
- Schachermayer W. (2004). The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Mathematical Finance, 14 (1), 19–48.
Supplementary files
