Manganese Silicide-Germanides Anodic Behavior in Sodium Sulfate Aqueous Solution: Influence of Germanium Content

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The anodic electrochemical behavior of manganese silicide-germanides with different ratios of germanium and silicon was studied using voltammetry and impedance spectroscopy methods in a 0.5 M sodium sulfate aqueous solution. It has been shown that the resistance of materials to oxidation decreases with increasing proportion of germanium, which, unlike silicon, is not capable of forming a layer of stable oxides on the surface of the material.

Full Text

Restricted Access

About the authors

I. L. Rakityanskaya

Perm State National Research University

Author for correspondence.
Email: irisa@yandex.ru
Russian Federation, Perm

D. A. Myasnikov

Perm State National Research University

Email: mda@psu.ru
Russian Federation, Perm

References

  1. Gonzalez-Rodriguez, J.G., Rosales, I., Casales, M., Serna, S., and Martinez S., Corrosion performance of molybdenum silicides in acid solutions, Mater. Sci. and Engineering: A., 2004, vol. 371, p. 217.
  2. Chen, H., Shao, X., Ma, J., and Huang, B.X., Corrosion and microstructure of the metal silicide (Mo1−xNbx)5Si3, Corrosion Sci., 2013, vol. 70, p. 152.
  3. Chen, X. and Liang, C., Transition Metal Silicides: Fundamentals, Preparation and Catalytic Appl. Catal. Sci. & Technol., 2019, vol. 9, p. 4785.
  4. Wang, D., Li, P., Kang, K., Zhang, C., Yin, J., Jiang, M., and Zeng, X., Corrosion behaviors of Cr13Ni5Si2 based composite coatings prepared by laser-induction hybrid cladding, Surface and Coatings Technol., 2016, vol. 300, p. 128.
  5. Li, R.P., Chen, H., Hao, X.H., Zhao, X.C., and Huang, B.X., Microstructure, mechanical properties and tribocorrosion characteristics of (Mo1-xCrx)5Si3 alloys, Intern. J. Refractory Metals and Hard Materials, 2023, vol. 115, p. 106291.
  6. Шеин, А. Б. Электрохимия силицидов и германидов переходных металлов, Пермь: Изд-во Перм. гос. ун-та, 2009. 269 с. [Shein, A.B. Electrochemistry of silicides and germanides of transition metals (in Russian), Perm: Issue of Perm State University, 2009. p. 269.]
  7. Hurlen, T. and Våland, T., Electrochemical behaviour of manganese: Dissolution, deposition, hydrogen evolution, Electrochim. Acta, 1964, vol. 9, no. 8, p.1077.
  8. Messaoudy, B., Anodic behavior of manganese in alkaline medium, Electrochim. Acta, 2001, vol. 46. P. 2487.
  9. Ефимов, Е.А. Об особенностях электрохимического растворения кремния n-типа. Докл. АН СССР. 1960. Т. 130. № 2. C. 353. [Efimov, E.A., About specificities of electrochemical dissolution of n-type silicon, Doklady AN SSSR (in Russian), 1960, vol. 130, no. 2, p. 353.]
  10. Lehmann, V., Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications, Wiley-VCH Verlag GmbH, 2003. 283 p.
  11. Zhang, X., Electrochemistry of Silicon and Its Oxide, Boston: Springer, MA, 2001. 510 p.
  12. Zhang, L., Zhang, B., Pan, B., Wang, C., Germanium electrochemical study and its CMP application, Appl. Surface Sci., 2017, vol. 422, p. 247.
  13. Tyurin, A.G., Nikolaychuk, P.A., and Kabardin, A.M., Thermodynamic evaluation of the corrosion-electrochemical behaviour of manganese – germanium system alloys, J. and Engineering, 2016, vol. 19, no. 27, p. 1.
  14. Шеин, А.Б. Коррозионно-электрохимическое поведениe Mn5Si3, Mn5Ge3 и Mn5(Ge1-xSix)3 в сернокислом электролите. Ползуновский вестник. 2009. Вып. 3. С. 247. [Shein, A.B., Corrosian-electrochemical behaviour of Mn5Si3, Mn5Ge3 and Mn5(Ge1-xSix)3 in sulphuric acid electrolyte, Polzunovskiy vestnic (in Russian), 2009, vol. 3, p. 247.]
  15. Ракитянская, И.Л., Мясников, Д.А., Шеин, А.Б. Анодное поведение германида марганца Mn5Ge3 в водном растворе сульфата натрия. Конденсированные среды и межфазные границы. 2021. Т. 23. С. 535. [Rakityanskaya, I.L., Myasnikov, D.A., and Shein, A.B., Anodic behaviour of manganese germanide Mn5Ge3 in a sodium sulphate aqueous solution, Condensed Matter and Interphases, 2021, vol. 23, p. 535.]
  16. Luo, J., Liang, X., Zhang, Y., et al., Application of the Kramers–Kronig relationships in the electrochemical impedance models fit, J. Solid State Electrochem., 2021, vol. 25, 2225.
  17. Kichigin, V.I. and Shein, A.B., Potentiostatic and impedance spectroscopic studies of the anodic behavior of cobalt silicides in fluoride-containing acidic solutions, Corrosion Sci., 2019, vol. 159, p. 108124.
  18. Шеин, А. Б., Пантелеева, В. В. Импеданс NiSi-электрода в сернокислом электролите. Уточненная модель активного анодного растворения. Конденсированные среды и межфазные границы. 2015. Т. 17. № 2. С. 201. [Shein, A.B. and Panteleeva, V.V., Impedance of NiSi electrode in sulfuric acid solution. The refined model of active anodic dissolution, Condensed Matter and Interphases, 2015, vol. 17, no. 2, p. 201.]
  19. Lasia, A., Electrochemical Impedance Spectroscopy and its Applications, New York: Springer, 2014, p. 367.
  20. Nikolaychuk, P.A., The potential – pH diagram for germanium, Phosphorus, Sulfur, and Silicon and the Related Elements, 2023, vol. 198, no. 9, p. 705.
  21. Takeno, N., Atlas of Eh pH diagrams. National Institute of Advanced Industrial Science and
  22. Technology, 2005. 287 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffractograms for silicide-germanides Mn5Si3-0.60Ge0.60 (a), Mn5Si3-2.40Ge2.40 (b) and Mn5Si3-2.85Ge2.85 (c)

Download (97KB)
3. Fig. 2. Polarisation curves for Mn5Ge3 (1), Mn5Si3-2.85Ge2.85 (2), Mn5Si3-2.40Ge2.40 (3), Mn5Si3-0.60Ge0.60 (4) in 0.5 M Na2SO4 solution, potential change rate 1 mV/s. On the inset - polarisation curve of Mn5Si3 (5) under similar conditions

Download (66KB)
4. Fig. 3. Nyquist plots for Mn5Si3-0.60Ge0.60 at anodic polarisation in 0.5 M Na2SO4 solution at potentials E, V: - 0.1 (1), 0.0 (2), 0.1 (3), 0.2 (4), 0.3 (5), 0.4 (6), 0.5 (7), 0.6 (8), 0.7 (9), 0.8 (10), 0.9 (11), 1.0 (12)

Download (145KB)
5. Fig. 4. General equivalent scheme for anodic dissolution of samples

Download (18KB)
6. Fig. 5. Equivalent schemes for impedance hodographs of Mn5Si3-0.60Ge0.60 in the potential range E = 0.4 V (a) and E = 0.5 - 1.0 V (b)

Download (38KB)
7. Fig. 6. Nyquist plots for Mn5Si3-2.40Ge2.40 at anodic polarisation in 0.5 M Na2SO4 solution at potentials E, V: - 0.1 (1), 0.0 (2), 0.1 (3), 0.2 (4), 0.3 (5), 0.4 (6), 0.5 (7), 0.6 (8), 0.7 (9), 0.8 (10), 0.9 (11), 1.0 (12)

Download (168KB)
8. Fig. 7. Equivalent scheme for Mn5Si3-2.40Ge2.40 hodographs in the potential range E = 0.4 - 0.8 V

Download (21KB)
9. Fig. 8. Nyquist plots for Mn5Si3-2.85Ge2.85 at anodic polarisation in 0.5 M Na2SO4 solution at potentials E, V: - 0.1 (1), 0.0 (2), 0.1 (3), 0.2 (4), 0.3 (5), 0.4 (6), 0.5 (7), 0.6 (8), 0.7 (9), 0.8 (10), 0.9 (11), 1.0 (12)

Download (142KB)
10. Fig. 9. Equivalent scheme for Mn5Si3-2.85Ge2.85 hodographs in the potential range E = 0.4 - 0.8 V

Download (8KB)
11. Fig. 10. Dependence of charge transfer resistance (Rct) (a) and DEC capacitance (Cdl) (b) on potential for Mn5Si3-0.60Ge0.60 (1), Mn5Si3-2.40Ge2.40 (2) and Mn5Si3-2.85Ge2.85 (3)

Download (34KB)
12. Fig. 11. Potential dependence of the parameter p for Mn5Si3-0.60Ge0.60 (1), Mn5Si3-2.40Ge2.40 (2) and Mn5Si3-2.85Ge2.85 (3)

Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences