Kinetic Peculiarities of Suzuki Reaction under Conditions of Competing Substrates in the Presence of Palladium Catalysts Deposted on Sulfonated Porous Aromatic Polymer

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, the Suzuki reaction was studied under conditions of competing substrates in the presence of catalysts, containing PdII or Pd0 nanoparticles, synthesized using a sulfonated amorphous aromatic polymer as a support. The paper discusses the influence of reaction conditions (stirring rate, temperature, nature of the base), as well as various pairs of competing aryl halides (bromides and iodides) containing both electron-donating and electron-withdrawing groups. It was shown for the first time that aryl bromides containing electron-withdrawing groups in the p-position with respect to the halogen are capable of noticeably slowing down the conversion of each other, as well as stopping the conversion of other aryl bromides in the presence of Pd0 nanoparticles as a source of catalytically active forms of palladium. Additives of sodium salt anions (chloride, bromide and acetate) are able to prevent the reaction from stopping.

全文:

受限制的访问

作者简介

L. Nikoshvili

Tver State Technical University

编辑信件的主要联系方式.
Email: nlinda@science.tver.ru
俄罗斯联邦, Tver

E. Bakhvalova

Tver State Technical University

Email: nlinda@science.tver.ru
俄罗斯联邦, Tver

M. Sulman

Tver State Technical University

Email: nlinda@science.tver.ru
俄罗斯联邦, Tver

参考

  1. Trzeciak A.M., Augustyniak A.W. // Coord. Chem. Rev. 2019. V. 384. P. 1.
  2. Pagliaro M., Pandarus V., Ciriminna R., Béland F., DemmaCarà P. // ChemCatChem. 2012. V. 4. P. 432.
  3. Eremin D.B., Ananikov V.P. // Coord. Chem. Rev. 2017. V. 346. P. 2.
  4. Афанасьев В.В., Беспалова Н.Б., Белецкая И.П. // Российский химический журнал. 2006. Т. 50. № 4. С. 81.
  5. Ashraf M., Ahmad M.S., Inomata Y., Inomata Y., Ullah N., Tahir M.N., Kida T. // Coord. Chem. Rev. 2023. V. 476. P. 214928.
  6. Kashin A.S., Ananikov V.P. // J. Org. Chem. 2013. V. 78. P. 11117.
  7. Astruc D. // Inorg. Chem. 2007. V. 46. P. 1884.
  8. Шмидт А.Ф., Аль-Халайка А., Смирнов В.В., Курохтина А.А. // Кинетика и катализ. 2008. Т. 49. № 5. С. 669. (Schmidt A.F., Al-Halaiqa A., Smirnov V.V., Kurokhtina A.A. // Kinet. Catal. 2008. V. 49. P. 638.)
  9. Chinchilla R., Nájera C. // Chem. Soc. Rev. 2011. V. 40. P. 5084.
  10. D’Alterio M.C., Casals-Cruañas È., Tzouras N.V., Talarico G., Nolan S.P., Poater A. // Chem. Eur. J. 2021. V. 27. P. 13481.
  11. Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P. // J. Am. Chem. Soc. 2023. V. 145. P. 9092.
  12. Шмид А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А., Явсин Д.А., Гуревич С.А., Зеликман В.М., Кротова И.Н., Ростовщикова Т.Н., Тарханова И.Г. // Кинетика и катализ. 2023. T. 64. № 1. С. 39. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A., Yavsin D.A., Gurevich S.A., Zelikman V.M., Krotova I.N., Rostovshchikova T.N., Tarkhanova I.G. // Kinet. Catal. 2023. V. 64. P. 32.)
  13. Денисов Е.Т. Кинетика гомогенных каталитических реакций: учеб. пособие для вузов. 2-е изд. Москва: Высшая школа, 1978. 367 с.
  14. Шмидт А.Ф., Курохтина А.А., Ларина Е.В. // Кинетика и катализ. 2012. Т. 53. № 1. С. 86. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinetics and Catalysis. 2012. V. 53. № 1. P. 84.)
  15. Шмидт А.Ф., Курохтина А.А., Ларина Е.В., Лагода Н.А. // Тонкие химические технологии. 2023. Т. 18. № 4. С. 328. (Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A. // Fine Chem. Technol. 2023. V. 18. P. 328.)
  16. Ларина Е.В., Курохтина А.А., Лагода Н.А., Григорьева Т.А., Шмидт А.Ф. // Кинетика и катализ. 2023. Т. 64. № 4. С. 428. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Grigoryeva T.A., Schmidt A.F. // Kinet. Catal. 2023. V. 64. № 4. P. 431.)
  17. Ларина Е.В., Ярош Е.В., Лагода Н.А., Курохтина А.А., Шмидт А.Ф. // Кинетика и катализ. 2019. Т. 60. № 3. С. 358. (Larina E.V., Yarosh E.V., Lagoda N.A., Kurokhtina A.A., Shmidt A.F. // Kinet. Catal. 2019. V. 60. № 3. P. 337.)
  18. Bakhvalova E.S., Bykov A.V., Markova M.E., Lugovoy Y.V., Sidorov A.I., Molchanov V.P., Sulman M.G., Kiwi-Minsker L., Nikoshvili L.Z. // Molecules. 2023. V. 28. P. 4938.
  19. Tan L., Tan B. // Chem. Soc. Rev. 2017. V. 46. Р. 3322.
  20. Yadav C., Maka V.K., Payra S., Moorthy J.N. // J. Catal. 2020. V. 384. Р. 61.
  21. Wang G., Wu Z., Liang Y., Liu W., Zhan H., Song M., Sun Y. // J. Catal. 2020. V. 384. Р. 177.
  22. Dalla Valle C., Zecca M., Rastrelli F., Tubaro C., Centomo P. // Polymers. 2020. V. 12. P. 600.
  23. Sapunov V.N., Nikoshvili L.Z., Bakhvalova E.S., Sulman M.G., Matveeva V.G. // Processes. 2023. V. 11. P. 878.
  24. Gao M., Wang J., Shang W., Chai Y., Dai W., Wu G., Guan N., Li L. // Catal. Today. 2023. V. 410. P. 237.
  25. Ruiz J.R., Jiménez-Sanchidrián C., Mora M. // Tetrahedron. 2006. V. 62. P. 2922.
  26. Xiao Q., Sarina S., Jaatinen E., Jia J., Arnold D.P., Liu H., Zhu H. // Green Chem. 2014. V. 16. P. 4272.
  27. Adamo C., Amatore C., Ciofini I., Jutand A., Lakmini H. // J Am. Chem. Soc. 2006. V. 128. P. 6829.
  28. Collins G., Schmidt M., O’Dwyer C., Holmes J.D., McGlacken G.P. // Angew. Chem. Int. Ed. 2014. V. 53. P. 4142.
  29. Saini S., Kumar K., Saini P., Sethi M., Meena P., Dandia A., Weigand W., Parewa V. // ACS Appl. Mater. Interfaces. 2024. Article ASAP.
  30. Jang W., Yun J., Ludwig L., Jang S.G., Bae J.Y., Byun H., Kim J.-H. // Front. Chem. 2020. V. 8. P. 834.
  31. Nikoshvili L., Bakhvalova E.S., Bykov A.V., Sidorov A.I., Vasiliev A.L., Matveeva V.G., Sulman M.G., Sapunov V.N., Kiwi-Minsker L. // Processes. 2020. V. 8. P. 1653.
  32. Шмидт А.Ф., Курохтинa А.А., Ларинa Е.В. // Кинетика и катализ. 2019. Т. 60. № 5. С. 555. (Schmidt A.F., Kurokhtina A.A., Larina E.V. // Kinet. Catal. 2019. V. 60. № 5. P. 551.)
  33. Бахвалова Е.С., Быков А.В., Никошвили Л.Ж., Киви Л.Л. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2021. № 13. С. 646.
  34. Ларинa Е.В., Курохтинa А.А., Лагода Н.А, Шмидт А.Ф. // Кинетика и катализ. 2022. Т. 63. № 2. С. 234. (Larina E.V., Kurokhtina A.A., Lagoda N.A., Schmidt A.F. // Kinet. Catal. 2022. V. 63. № 2. P. 207.)
  35. Scott N.W.J., Ford M.J., Jeddi N., Eyles A., Simon L., Whitwood A.C., Tanner T., Willans C.E., Fairlamb I.J.S. // J. Am. Chem. Soc. 2021. V. 143. P. 9682.
  36. Kalek M., Jezowska M., Stawinski J. // Adv. Synth. Catal. 2009. V. 351. P. 3207.
  37. Jutand A. // Appl. Organometal. Chem. 2004. V. 18. P. 574.
  38. Ivančič A., Košmrlj J., Gazvoda M. // Commun. Chem. 2023. V. 6. P. 51.
  39. Fu F., Xiang J., Cheng H., Cheng L., Chong H., Wang S., Li P., Wei S., Zhu M., Li Y. // ACS Catal. 2017. V. 7. P. 1860.
  40. Mohajer F., Heravi M.M., Zadsirjan V., Poormohammad N. // RSC Adv. 2021. V. 11. P. 6885.

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1. Suzuki cross-coupling response

下载 (75KB)
3. Fig. 1. Photograph of SNF polymer granules

下载 (307KB)
4. Fig. 2. High-resolution XRD spectrum of Pd3d (a) and light-field PEM image of the catalyst 1% Pd/SNF-R (b)

下载 (251KB)
5. Fig. 3. Dependence of catalytic activity on stirring rate in the cross-coupling reaction of 4-bromanisole and phenylboronic acid in the presence of 1% Pd/SNF-R

下载 (73KB)
6. Fig. 4. Time dependences of 4-bromanisole concentration (a, b), the fraction of the cross-coupling product in the mixture with the homocoupling product (biphenyl) on 4-bromanisole conversion (c, d), as well as the corresponding phase trajectories (e, f) when varying the reaction temperature in the presence of initial 1% Pd/SNF (a, c, e) and reduced 1% Pd/SNF-R (b, d, f) samples

下载 (512KB)
7. Fig. 5. Kinetic curves of aryl halide concentration-time dependence in the presence of competing substrates: 4-iododnisole and 4-bromanisole (a), 4-bromonitrobenzene and 4-bromanisole (b), as well as the effect of sodium salt additives on the concentration-time dependence of 4-bromonitrobenzene (solid lines) and 4-bromanisole (dashed lines) (c) and phase trajectories (d) in the presence of 1% Pd/SNF-R catalyst

下载 (409KB)
8. Fig. 6. Comparison of time dependences of 4-bromo-nitrobenzene and 4-bromobenzaldehyde concentrations in separate experiments (black symbols) and under conditions of competing substrates (grey symbols) in the presence of initial 1% Pd/SNF (a) and reduced 1% Pd/SNF-R (b) catalysts, as well as the corresponding phase trajectories obtained at the first and repeated use of samples of 1% Pd/SNF (c) and 1% Pd/SNF-R (d) under the conditions of competing substrates

下载 (359KB)
9. Fig. 7. Light-field PREM images of the initial 1% Pd/SNF-R (a) and samples of 1% Pd/SNF-R (b) and 1% Pd/SNF (c) after Suzuki reaction under the conditions of competing substrates (4-bromo-nitrobenzene and 4-bromobenzaldehyde); example of dark-field image (d) and Pd EDS mapping (e) for 1% Pd/SNF-R catalyst after reaction, as well as histograms of particle size distribution in samples (f)

下载 (390KB)