The effect of initial temperature on the modes of passivation of pyrophoric na-nopowder (macrokinetic approach)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the work, thermal modes of passivation of pyrophoric nanopowders at lower initial temperatures of the layer of the nanopowder are studied with analytical and numerical methods in the context of a macrokinetic approach. It is shown that the decrease in the initial temperature of the layer leads to a transition from a layer-by-layer mode of passivation to the volume one. That allows controlling the acceptable level of a warming up at passivation even at the high concentration of oxidizer in gas. Analytical expressions for delimitation of the layer-by-layer and volume passivation modes are obtained; these are confirmed by the results of numerical calculations.

Full Text

Restricted Access

About the authors

B. S. Seplyarskii

Merzhanov Institute of Structural Macrokinetics and Materials Science

Author for correspondence.
Email: seplb1@mail.ru
Russian Federation, Chernogolovka Moscow region

N. M. Rubtsov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka Moscow region

T. P. Ivleva

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka Moscow region

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: nmrubtss@mail.ru
Russian Federation, Chernogolovka Moscow region

References

  1. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.
  2. Азаренков Н.А., Веревкин А.А., Ковтун Г.П., Литовченко С.В. Нанотехнологии и наноматериалы. Харьков: Изд-во Казах. нац. ун-т им. аль-Фараби, 2009. 68 с.
  3. Alymov M.I., Rubtsov N.M., Seplyarskii B.S., Zelensky V.A., Ankudinov A.B. // Mendeleev Communs. 2017. № 27. P. 482–484.
  4. Hosokawa M., Nogi K., Naito M., Yokoyama T.Nanoparticle Technology Нandbook. L.: Elsevier, 2007. 644 p.
  5. Rubtsov N.M., Seplyarskii B.S., Alymov M.I. Ignition and Wave Processes in Combustion of Solids. B.: Springer Intern. Publ., 2017. 284 p.
  6. Meziani M.J., Bunker C.E., Lu F., Li H., Wang W., Guliants E.A., Quinn R.A., Sun Y.-P. // ACS Appl. Mater. Interfaces. 2009. V. 1. № 3. P. 703–709.
  7. Nagarajan R., Hatton T.A. Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization. Wash. (D.C.): Amer. Chem. Soc., 2008. 451 p.
  8. Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 491 с.
  9. Мержанов А.Г, Барзыкин В.В., Абрамов В.Г. // Хим. физика. 1996. Т. 15. № 6. С. 3–44.
  10. Seplyarsky B.S., Ivleva T.P., Alymov M.I. // Nanotechnol. in Russia. 2017. V. 12. № 11/12. P. 583–588.
  11. Alymov M.I., Rubtsov N.M., Seplyarskii B.S., Ze-lensky V.A., Ankudinov A.B. // Mendeleev Communs. 2017. № 27. Р. 631–633.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Process Model. 1– gas above the powder layer, 2 — passivated nanopowder, 3 — initial nanopowder, 4 — substrate.

Download (53KB)
3. Fig. 2. Dependencies at the lower boundary of the layer on time: the depth of transformation of the nanopowder η1 (1), oxidant η (2), and the maximum temperature in the layer maxθ (3). Diffusion (frontal) passivation mode. Initial layer temperature

Download (48KB)
4. Fig. 3. Dependencies at the lower boundary of the layer on time: the conversion depth of the nanopowder η1 (1), oxidant η (2) and maximum temperature in the maxθ layer (3), heat release rate f (Lζ) (4). Volume passivation mode. Initial layer temperature

Download (45KB)

Copyright (c) 2019 Russian Academy of Sciences