Effect of Fe nanopowder sample density on ignition parameters at heating in the air

Cover Page

Cite item

Full Text

Abstract

Ignition of Fe nanopowders of bulk density and its samples compacted to relative density of 0,3-0,5 was studied while they were heated in the air. The ignition temperature of the compacted samples does not depend on the heating rate and comprises 100-115 °C. The oxidation process includes the stages of inert heating, ignition, surface and filtration modes of the reaction and afterburning. The time of the active stages, i.e. ignition and filtration mode, depends on the sample density at the same heating terms. It allows one to develop storage methods of Fe nanopowders as compacts.

About the authors

M. I. Alymov

Merzhanov Institute of Structural Macrokinetics and Materials Science

Author for correspondence.
Email: alymov@ism.ac.ru

Corresponding Member of the Russian Academy of Sciences

Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

S. G. Vadchenko

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: alymov@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

E. V. Suvorova

Merzhanov Institute of Structural Macrokinetics and Materials Science

Email: alymov@ism.ac.ru
Russian Federation, 142432, Moscow Region, Chernogolovka, Academician Osypian street, 8

V. A. Zelensky

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: alymov@ism.ac.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334

A. B. Ankudinov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: alymov@ism.ac.ru
Russian Federation, 49, Leninskii Prospect, Moscow, 119334

References

  1. Bouillard J., Vignes A., Dufaud O., Perrin L., Thomas D. Ignition and Explosion Risks of Nanopowders // France J. Hazardous Materials. 2010. V. 181. № 1/3. P. 873.
  2. Бернер М.К., Зарко В.Е., Талавар М.Б. Наночастицы энергетических материалов: способы получения и свойства (обзор) // Физика горения и взрыва. 2013. T. 49. № 6. С. 3-30.
  3. Алымов М.И., Рубцов Н.М., Сеплярский Б.С., Зеленский В.A., Анкудинов А.Б. Исследование зависимости временных характеристик воспламенения и горения нанопорошков железа на воздухе от длительности пассивации после синтеза // Российские нанотехнологии. 2017. T. 12. № 5/6. C. 18-21.
  4. Alymov M.I., Rubtsov N.M., Seplyarsky B.S., Zelensky V.A., Ankudinov A.B. Passivation of Iron Nanoparticles at Subzero Temperatures // Mendeleev Commun. 2016. V. 26. P. 452.
  5. Alymov M.I., Rubtsov N.M., Seplyarsky B.S., Zelensky V.A., Ankudinov A.B. Features of Combustion and Passivation of Nickel Nanoparticles // Mendeleev Commun. 2016. V. 26. P. 549.
  6. Зеленский В.А., Алымов М.И., Анкудинов А.Б., Трегубова И.В. Низкотемпературное водородное восстановление медных порошков // Перспективные материалы. 2009. № 6. C. 83.
  7. Лернер М.И., Сваровская Н.В., Псахье С.Г., Бакина О.В. Технология получения, характеристики и некоторые области применения электровзрывных нанопорошков металлов // Российские нанотехнологии. 2009. T. 4. № 11/12. C. 56-68.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies