Suns are convex in tangent directions

Cover Page

Cite item

Full Text

Abstract

A direction d is called a tangent direction to the unit sphere S of a normed linear space s  S and lin(s + d) is a tangent line to the sphere S at s imply that lin(s + d) is a one-sided tangent to the sphere S, i. e., it is the limit of secant lines at s. A set M is called convex with respect to a direction d if [x, y]  M whenever x, y in M, (yx) || d. We show that in a normed linear space an arbitrary sun (in particular, a boundedly compact Chebyshev set) is convex with respect to any tangent direction of the unit sphere.

Full Text

Пусть X — вещественное линейное нормированное или несимметрично нормированное пространство конечной размерности, B(x, r) — замкнутый шар с центром x и радиусом r, B (x,r) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaaxacabaGaam OqaaWcbeqaaiadKI8IyiYBaaGccaGGOaGaamiEaiaacYcacaaMc8Ua aGPaVlaadkhacaGGPaaaaa@4093@ — открытый шар, S(x, r) — сфера, S = S(0, 1). [1]

Определение 1. Множество M называется чебышевским множеством, если оно есть множество существования и множество единственности, т.е. если для каждого x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ X множество PMx ближайших элементов из M для x одноточечно. Точкаx MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ X\M называется точкой солнечности для множества MX, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaad2eacqGHck cZcaWGybGaaiilaaaa@3A13@ M φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ , если существует точка светимости y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ PM/x φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ такая, что y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ PM ((1 — λ)y + λx) для всех λ 0. Множество φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ M ⊂ Х называется солнцем, если каждая точка x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ X \M является точкой солнечности. Множество M MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgkOimdaa@37B4@ X называется строгим солнцем, если для каждой точки x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ X\M выполнено PM/x φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ и любая точка y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ PM x φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ является точкой светимости.

“Солнца” являются наиболее естественным объектом, для которого выполнен критерий Колмогорова о характеризации элемента наилучшего приближения; им присущи те или иные свойства отделимости: шар можно отделить от такого множества посредством большего шара или опорного конуса.

В работе мы следуем определениям, данным в обзоре [1]. Основные определения даются ниже.

Исследуется задача о выпуклости солнц по касательным направлениям сферы. Данная постановка задачи является новой и была впервые решена в работе [2] для чебышевских множеств в конечномерных пространствах. Подчеркнём, что вопрос о выпуклости солнц (в отличие от проблемы выпуклости чебышевских множеств) решается очень просто: в пространстве X любое солнце выпукло, если и только если пространство X гладко (т.е. в любой точке единичной сферы пространства X опорная гиперплоскость единственна). Отметим, что известен пример несвязного солнца — единственный пример такого рода был построен В.А. Кощеевым в бесконечномерном подпространстве пространства C[0, 1] со специально выбранной нормой (см. [1; п. 8.3]). Этот пример не противоречит утверждению о выпуклости солнца по любому касательному направлению к сфере: даже на плоскости легко построить несвязное множество, выпуклое по любому касательному направлению к сфере (см. также замечание 3 ниже).

Определение 2. Для точки y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ S через Λy обозначим множество предельных точек выражения yz ||yz|| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaamaalaaabaGaam yEaiabgkHiTiaadQhaaeaacaGG8bGaaiiFaiaadMhacqGHsislcaWG 6bGaaiiFaiaacYhaaaaaaa@3F9C@ при z y, z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ S (т.е. Λyмножество полукасательных направлений к сфере S в точке y). Направление d называется (глобально) касательным направлением для сферы S, если для любой точки y MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ S условие опорности направления d в точке y влечёт, что d MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ Λy, т.е. направление d является касательным в точке y.

К примеру, в пространстве l n ,n2, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaGaeyOhIukaaOGaaiilaiaaygW7caaMb8UaaGPa VlaaykW7caWGUbGaeyyzImRaaGOmaiaacYcaaaa@4483@ касательными направлениями сферы являются только направления, параллельные рёбрам единичного шара (куба). В пространстве l n 1 ,n3, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaGaaGymaaaakiaacYcacaaMb8UaaGzaVlaaykW7 caaMc8UaamOBaiaaykW7caaMc8UaeyyzImRaaGPaVlaaykW7caaIZa Gaaiilaaaa@49FA@ касательных направлений к сфере нет.

Определение 3. Множество M называется выпуклым по направлению d, если из того, что x,yM,(yx)||d, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhacaGGSa GaamyEaiabgIGiolaad2eacaGGSaGaaGPaVlaaykW7caGGOaGaamyE aiabgkHiTiaadIhacaGGPaGaaiiFaiaacYhacaaMc8UaaGPaVlaads gacaGGSaaaaa@496F@ вытекает, что [x,y]M. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaacUfacaWG4b GaaiilaiaadMhacaGGDbGaeyOGIWSaamytaiaac6caaaa@3DA3@

Основным результатом работы является следующая

Теорема 1. В линейном нормированном пространстве произвольное солнце выпукло по любому касательному направлению единичной сферы.

Теорема 1 обобщает следующий результат из работы [2].

Теорема A. Если направление является касательным для единичной сферы конечномерного банахова пространства, то всякое чебышевское множество выпукло в этом направлении.

В теореме A и теореме 1 важно, что направление, по которому исследуется выпуклость чебышевского множества, является касательным для всей сферы. Можно легко построить пример трёхмерного пространства (к примеру, X= l 2 (2) 1 ) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIfacqGH9a qpcqWItecBdaahaaWcbeqaaiaaikdaaaGccaGGOaGaaGOmaiaacMca cqGHvksXdaWgaaWcbaGaaGymaaqabaGccqWIDesOcaGGPaaaaa@40EA@ и чебышевского множества (солнца) в нём, не выпуклого по направлению, являющемуся касательным к сфере в некоторой точке (но, конечно, не во всех точках сферы, в которых оно является опорным). В двумерном банаховом пространстве любое касательное направление в точке сферы является касательным направлением сферы.

Более сильный вариант теоремы A для пространства l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ содержится в теореме B (см. [1]).

Пусть X = l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ . Пусть также k + , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadUgacqGHii IZcqWIKeIOdaWgaaWcbaGaey4kaScabeaakiaacYcaaaa@3B6C@ k dim X.

Обозначим cAffk(X) — класс всех аффинных координатных подпространств из X конечной размерности k, т. е. подпространств вида {x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ l n | MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaGc caaMc8UaaiiFaaaa@4115@ xi1= = c1, ..., x i k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadIhadaWgaa WcbaGaamyAamaaBaaameaacaWGRbaabeaaaSqabaaaaa@38F7@ = ck} для некоторого фиксированного набора индексов i1, ..., ik и набора констант c1, ..., ck. В следующей теореме ri A — относительная внутренность множества A, замкнутый промежуток Π — это пересечение экстремальных (координатных) гиперполос вида {x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ | a f (x) b}, —∞ a b +∞, f MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabgIGiodaa@373C@ ext S*, порождаемых в исходном пространстве l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ экстремальными функционалами из сопряжённого пространства.

Теорема B. Чебышевское множество в l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ является экстремально чебышевским. Иными словами, если Π замкнутый промежуток в l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ M Π φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ , M ri Π = φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ , то пересечение M Π одноточечно.

Как следствие, если P координатное подпространство и M P φ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf gaiuGajugGbabaaaaaaaaapeGaa8NXdaaa@3B21@ , то M P чебышевское множество в P.

Отметим ещё один результат [3], частично обобщающий теорему A.

Определение 4. Направление d будем называть гиперкасательным направлением для единичной сферы S, если направление d параллельно некоторой гиперграни единичного шара.

Теорема C. Чебышевская кривая в l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ выпукла по любому гиперкасательному направлению к единичной сфере.

Замечание 1. Произвольное чебышевское множество в l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ не обязано быть выпуклым по гиперкасательному направлению. Соответствующий пример легко построить в пространстве любой размерности n 3.

Замечание 2. Строгое солнце (и в частности, солнце) не обязано быть выпуклым по (локально) касательному направлению в точке сферы. Рассмотрим соответствующий пример в пространстве l 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaaIZaaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E4A@ . На плоскости 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabl2riHoaaCa aaleqabaGaaGOmaaaaaaa@3811@ для каждого t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcqWIDesOaaa@39A5@ зададим ломаную Mt следующим уравнением в полярной системе координат (r, φ):

M t = r0, φ= 1 4  arcctgt r0, φ= π 2 + 1 4  arcctgt . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaamytamaaBaaaleaacaWG0baabeaakiabg2da9maacmaabaGaamOC aiabgwMiZkaaicdacaGGSaaccaGae8hiaaIaeqOXdOMaeyypa0Jaey OeI0YaaSaaaeaacaaIXaaabaGaaGinaaaacaGGGcGaaeyyaiaabkha caqGJbGaae4yaiaabshacaqGNbGaamiDaaGaay5Eaiaaw2haaiablQ IivnaacmaabaGaamOCaiabgwMiZkaaicdacaGGSaGae8hiaaIaeqOX dOMaeyypa0ZaaSaaaeaacqaHapaCaeaacaaIYaaaaiabgUcaRmaala aabaGaaGymaaqaaiaaisdaaaGaaiiOaiaabggacaqGYbGaae4yaiaa bogacaqG0bGaae4zaiaadshaaiaawUhacaGL9baacaGGUaaaaa@653D@

Множество M = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiablQIivbaa@36EA@ {(Mt + (0, 0, t)) | t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiaadshacqGHii IZcqWIDesOaaa@39A5@ } является строгим солнцем в l 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaaIZaaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E4A@ , но его пересечение с касательной прямой в некоторых точках сферы не выпукло по направлению такой касательной.

Замечание 3. В трёхмерном пространстве l 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaaIZaaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E4A@ можно построить пример множества замкнутого, связного и выпуклого по любому касательному направлению сферы S, не являющегося солнцем (и, как следствие, не являющегося чебышeвским множеством).

Замечание 4. B пространстве l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ утверждение о выпуклости солнц по любому касательному направлению было известно ранее (в другой формулировке). Данный результат вытекает из монотонной линейной связности солнц в l n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqik81jY=vipgYlh9vqqj=hEeeu0xXdbba9frFj0=OqFf ea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr 0=vqpWqaaeaabiGaaiaacaqabeaadaqaaqaaaOqaaiabloriSnaaDa aaleaacaWGUbaabaqeduuDJXwAKbYu51MyVXgaiuaacqWFEisPaaaa aa@3E80@ .

Заключение. Показано, что в произвольном линейном нормированном пространстве произвольное солнце выпукло по любому касательному направлению единичной сферы. Теорема A, в которой тот же результат установлен для чебышевских множеств в конечномерных пространствах, нашла своё применение в работах [3, 5] по исследованию локально чебышевских множеств. Авторы надеются, что теорема 1 также окажется полезной при исследовании более общих множеств с заданными локально аппроксимативными свойствами (по поводу таких задач см. [6–8]).

Работа первого автора выполнена при поддержке РФФИ (гранты 18–01–00333-а, 19–01–00332-а) и гранта Президента РФ поддержки ведущих научных школ (проект НШ-6222.2018.1).

×

About the authors

A. R. Alimov

Lomonosov Moscow State University; Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: alexey.alimov-msu@yandex.ru
Russian Federation, Moscow

E. V. Shchepin

Steklov Mathematical Institute of Russian Academy of Sciences

Email: scepin@mi.ras.ru
Russian Federation, Moscow

References

  1. Алимов А.Р., Царьков И.Г. Связность и солнечность в задачах наилучшего и почти наилучшего приближе-ния // УМН. 2016. Т 71. №1 (427). С.3–84.
  2. Алимов А.Р., Щепин Е.В. // Выпуклость чебышёвских множеств по касательным направлениям // УМН. 2018. Т. 73. № 2 (440). С. 185–186.
  3. Алимов А.Р. Локально чебышёвские множества в пространстве // Вестн. филиала МГУ. Душанбе. Сер. Естеств. наук, 2018. № 4(1). С. 5–8.
  4. Алимов А.Р. Выпуклость ограниченных чебышёвских множеств в конечномерных пространствах с несим-метричной нормой // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14. № 4(2). С. 489–497.
  5. Alimov A.R. On Approximative Properties of Locally Chebyshev Sets // Proc. Inst. Math. Mech., Natl. Acad. Sci. Azerb. 2018. V. 44. № 1. Р. 36–42.
  6. Флеров А.А. Локально чебышевские множества на плоскости // Мат. заметки. 2015. T.97. № 1. С. 142–149.
  7. Флеров А.А. О множествах с не более чем двузначной метрической проекцией на нормированной плоско-сти // Мат. заметки. 2017. T. 101. № 2. С. 286–301.
  8. Alimov A.R. Continuity of the Metric Projection and Local Solar Properties of Sets // Set-Valued Var. Anal. 2017.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies