The fractal model of reinforcement of nanocomposites polymer/carbon nanotubes with ultrasmall concentrations of nanofiller

Cover Page

Cite item

Full Text

Abstract

The structural aspects, defining reinforcement degree (enhancement of elasticity modulus) of nanocomposites polymer/carbon nanotubes with ultrasmall concentrations of nanofiller, were considered. It has been shown that the indicated parameter is controlled by two factors, namely, structure of nanocomposite and type of reinforcing component. Introduction of nanofiller in matrix polymer changes its structure in virtue of formation of interfacial regions. Hence, the efficiency of nanofiller as reinforcing element is defined by its ability to generate interfacial regions.

About the authors

G. V. Kozlov

Kabardino-Balkarian State University

Email: i_dolbin@mail.ru
Russian Federation, 173, Chernischevskogo street, Nalchik, 360004

I. V. Dolbin

Kabardino-Balkarian State University

Author for correspondence.
Email: i_dolbin@mail.ru
Russian Federation, 173, Chernischevskogo street, Nalchik, 360004

O. I. Koifman

Ivanovo State University of Chemistry and Technology; G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: i_dolbin@mail.ru

Corresponding Member of the RAS

Russian Federation, 7, Sheremetev avenue, Ivanovo, 153000; 1, Akademicheskaja street, Ivanovo, 153045

References

  1. Miyagawa H., Drzal L.T. // Polymer. 2004. V. 45. № 18. P. 5163 -5170.
  2. Gojny F.H., Wichmann M.H.G., Fiedler B., Schulte K. // Composites Sci. Techn. 2005. V. 65. № 15 -16. P. 2300 -2313.
  3. Jeong W., Kessler M.R. // Chem. Mater. 2008. V. 20. № 22. P. 7060 -7068.
  4. Mikitaev A.K., Kozlov G.V., Zaikov G.E. Polymer Nanocomposites: Variety of Structural Forms and Applications. N.Y.: Nova Sci. Publ., 2008. 319 p.
  5. Ahmed S., Jones F.R. // J. Mater. Sci. 1990. V. 25. № 12. P. 4933 -4942.
  6. Blond D., Barron V., Ruether M., Ryan K.P., Nicolosi V., Blau W.J., Coleman J.N. // Adv. Funct. Mater. 2006. V. 16. № 6. P. 1608 -1614.
  7. Mikitaev A.K., Kozlov G.V. // Phys. Solid State. 2015. V. 57. № 5. P. 574 -577. doi: 10.1134/S1063783415050224
  8. Kozlov G.V., Zaikov G.E. Structure of the Polymer Amorphous State. Utrecht; Boston: Brill Acad. Publ., 2004. 465 p.
  9. Schaefer D.W., Justice R.S. // Macromolecules. 2007. V. 40. № 24. P. 8501 -8517.
  10. Kozlov G.V., Yanovskii Yu.G. Fractal Mechanics of Polymers. Toronto (N.J.): App. Acad. Press, 2015. 370 p.
  11. Kozlov G.V., Yanovskii Yu.G., Zaikov G.E. Structure and Properties of Particulate-Filled Polymer Composites: The Fractal Analysis. N.Y.: Nova Sci. Publ., 2010. 282 p.
  12. Jan R., May P., Bell A.P., Habib A., Khan U., Coleman J.N. // Nanoscale. 2014. V. 6. № 9. P. 4889 -4895. doi: 10.1039/c3nr06711d
  13. Mikitaev A.K., Kozlov G.V. // Phys. Solid State. 2017. V. 59. № 7. P. 1446 -1449. doi: 10.1134/S1063783417070149
  14. Козлов Г.В., Долбин И.В. // Изв. вузов. Физика. 2017. Т. 60. № 6. С. 72 -76.
  15. Schnell R., Stamm M., Creton C. // Macromolecules. 1998. V. 31. № 7. P. 2284 -2292.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies