Effect of the anisotropic yield condition on the predicted distribution of residual stresses in a thin disk

Cover Page

Cite item

Full Text

Abstract

The effect of the replacement of the exact yield condition by that averaged over the distribution of residual stresses in a thin hollow disk subjected to external pressure and subsequent unloading is investigated. The formulation of the boundary-value problem is specially simplified so that it is possible to obtain a mathematically exact semi-analytical solution, with the help of which it is easy to investigate the effect of averaging the yield condition on the stressed state including the distribution of residual stresses. The accepted exact yield condition is averaged using several generally accepted approaches. The comparative analysis of the distribution of residual stresses shows a significant deviation of the distribution resulting from solutions for the averaged yield conditions from the exact distribution of residual stresses.

About the authors

F. V. Grechnikov

Samara Science Center of the Russian Academy of Sciences

Email: yaroslav.erisov@mail.ru

Academician of the Russian Academy of Sciences

Russian Federation, 3a, Studencheskiy pereulok, Samara, 443001

Ya. A. Erisov

Samara National Research University

Author for correspondence.
Email: yaroslav.erisov@mail.ru
Russian Federation, 34, Moscow highway, Samara, 443086

S. E. Alexandrov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: yaroslav.erisov@mail.ru
Russian Federation, 101, bldg. 1, Vernadskogo prospect, Moscow, 119526

References

  1. Микляев П.Г., Фридман Я.Б. Анизотропия механических свойств металлов. М.: Металлургия, 1986. 224 с.
  2. Хилл Р. Математическая теория пластичности. М.: Гостехиздат, 1956. 407 c.
  3. Lankford W.T., Snyder S.C., Bausher J.A. // Trans. Amer. Soc. Metals. 1950. V. 42. P. 1197-1232.
  4. Banabic D. Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Heidelberg: Springer, 2010. 301 p.
  5. Шевелев В.В., Яковлев С.П. Анизотропия листовых материалов и ее влияние на вытяжку. М.: Машиностроение, 1972. 132 с.
  6. Гречников Ф.В. Деформирование анизотропных материалов (резервы интенсификации). М.: Машиностроение, 1998. 448 с.
  7. Lequeu PH., Jonas J.J. // Metallurg. Trans. A. 1988. V. 19, Iss. 1. P. 105-120.
  8. Wang X., Guo M., Cao L., Peng X., Zhang J., Zhuang L. // J. Wuhan Univ. Technol. Materials Sci. Edition. 2016. V. 31. Iss. 3. P. 648-653.
  9. Inoue H., Takasugi T. // Materials Trans. 2007. V. 48. Iss. 8. P. 2014-2022.
  10. Серебряный В.Н., Позднякова Н.Н. // Металлы. 2009. № 1. С. 66-72.
  11. Гречников Ф.В., Ерисов Я.А., Зайцев В.М. // Изв. Самар. науч. центра РАН. 2014. Т. 16, № 4-1. С. 154-157.
  12. Wagoner R.H., Li M. // Int. J. Plast. 2007. V. 23. P. 345-360.
  13. Prime M.B. // Int. J. Solids and Struct. 2017. V. 118–119. P. 1339-1351.
  14. Alexandrov S. Elastic/Plastic Discs under Plane Stress Conditions. Heidelberg: Springer, 2015. 113 p.
  15. Watson M., Dick R., Huang Y.H., Lockley A., Cardoso R., Santos A. // J. Phys.: Conf. Ser. 2016. V. 734. Iss. 2. 022001.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies