Polymer-inorganic composites based on Celgard matrices obtained using solutions of (aminopropyl)triethoxysilane in supercritical carbon dioxide

Cover Page

Cite item

Full Text

Abstract

A method has been developed for the fabrication of a polymer-inorganic composite material based on the Celgard polymer matrix by means of the introduction of silica nanoparticles with amino groups into the polymer structure through impregnation of porous structure with solutions of the aminosilane precursor in supercritical СO2. The presence of inorganic nanoparticles made it possible to noticeably enhance the hydrophilicity of the material, and the absolute wetting ability of supercritical CO2 was favorable for uniform particle distribution in membrane pores. The particles growing in membrane pores allowed one to reduce the pore size, which opens ways to control ion-transport selectivity.

About the authors

I. V. Elmanovich

Lomonosov Moscow State University; Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: vv.zefirov@physics.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 28, Vavilova street, Moscow, 119991

V. V. Zefirov

Lomonosov Moscow State University; Institute of Organoelement Compounds of the Russian Academy of Sciences

Author for correspondence.
Email: vv.zefirov@physics.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 28, Vavilova street, Moscow, 119991

V. E. Sizov

Lomonosov Moscow State University

Email: vv.zefirov@physics.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. S. Kondratenko

Lomonosov Moscow State University

Email: vv.zefirov@physics.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991

M. O. Gallyamov

Lomonosov Moscow State University; Institute of Organoelement Compounds of the Russian Academy of Sciences

Email: vv.zefirov@physics.msu.ru
Russian Federation, 1, Leninskie gory, Moscow, 119991; 28, Vavilova street, Moscow, 119991

References

  1. Leung P., Xiaohong L., Ponce de Leo'n C., Berlouis L., Low J., Walsh F. Progress in Redox Flow Batteries, Remaining Challenges and their Applications in Energy Storage // RSC Adv. 2012. V. 2. № 27. P. 10 125-10 156. doi: 10.1039/c2ra21342g.
  2. Skyllas-Kazacos M., Chakrabarti M., Hajimolana S., Mjalli F., Saleem M. Progress in Flow Battery Research and Development // J. Electrochem. Soc. 2011. V. 158. № 8. P. R55-R79. doi: 10.1149/1.3599565.
  3. Winsberg J., Hagemann T., Janoschka T., Hager M., Schubert U. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials // Angew. Chem. Int. Ed. 2017. V. 56. № 3. P. 686-711. doi: 10.1002/anie.201604925.
  4. Mohammadi T., Skyllas-Kazacos M. Characterisation of Novel Composite Membrane for Redox Flow Battery Applications // J. Memb. Sci. 1995. V. 98. № 1/2. P. 77-87. doi: 10.1016/0376-7388(94)00178-2.
  5. Wei X., Li B., Wang W. Porous Polymeric Composite Separators for Redox Flow Batteries // Polym. Rev. 2015. V. 55. № 2. P. 247-272. DOI: 10.1080/ 15583724.2015.1011276.
  6. Oriji G., Katayama Y., Miura T. Investigations on V(IV)/V(V) and V(II)/V(III) Redox Reactions by Various Electrochemical Methods // J. Power Sources. 2005. V. 139. № 1/2. P. 321-324. doi: 10.1016/j.jpowsour.2004.03.008.
  7. Doan T. N.L., Hoang T. K.A., Chen P. Recent Development of Polymer Membranes as Separators for All-Vanadium Redox Flow Batteries // RSC Adv. 2015. V. 5. № 89. P. 72 805-72 815. doi: 10.1039/C5RA05914C.
  8. Zhang H., Zhang H., Li H., Mai Z., Zhang J. Nanofiltration (NF) Membranes: the Next Generation Separators for All Vanadium Redox Flow Batteries (VRBs). Chem. Soc. Rev. 2011. P. 1676-1679. doi: 10.1039/c1ee01117k.
  9. Lu W., Yuan Z., Zhao Y., Zhang H., Zhang H., Li X. Porous Membranes in Secondary Battery Technologies // Chem. Soc. Rev. Roy. Soc. Chem. 2017. V. 46. № 8. P. 2199-2236. doi: 10.1039/c6cs00823b.
  10. Zhang H., Zhang H., Li X., Mai Z., Wei W. Silica Mo-dified Nanofiltration Membranes with Improved Selectivity for Redox Flow Battery Application // Energy Environ. Sci. 2012. V. 5. № 4. P. 6299-6303. doi: 10.1039/c1ee02571f.
  11. Wei X., Nie Z., Luo Q., Li B., Chen B., Simmons K., Sprenkle V., Wang W. Nanoporous Polytetrafl Uoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane // Adv. Energy Mater. 2013. V. 3. № 9. P. 1215-1220. doi: 10.1002/aenm.201201112.
  12. Никитин Л. Н., Галлямов М. О., Николаев А. Ю., Саид-Галиев Э.Е., Хохлов А. Р., Букалов С. С., Магдануров Г. И., Волков В. В., Штыкова Э. В., Дембо К. А., Ельяшевич Г. К. Структура композитов, полученных формированием полипиррола в сверхкритическом CO2 на микропористом полиэтилене // Высокомолекуляр. соединения. Сер. А. 2006. Т. 48. № 8. С. 1431-1447.
  13. Гвоздик Н. А., Зефиров В. В., Эльманович И. В., Карпушкин Е. А., Стивенсон К. Д., Сергеев В. Г., Галлямов М. О. Предобработка матриц Celgard с помощью пероксиугольной кислоты для последующего нанесения слоя полидопамина // Коллоид. журн. 2019. Т. 81. № 1. С. 31-41. doi: 10.1134/S0023291219010063.
  14. Sarada T., Sawyer L. C. Three Dimensional Structure of Celgard ®* // Microporous Membranes. 1983. V. 15. P. 97-113. doi: 10.1016/S0376-7388(00) 81364-2.
  15. Stalder A. F., Melchior T., Müller M., Sage D., Blu T., Unser M. Low-Bond Axisymmetric Drop Shape Ana-lysis for Surface Tension and Contact Angle Measurements of Sessile Drops // Colloids Surfaces. A. Phy-sicochem. Eng. Asp. 2010. V. 364. № 1-3. P. 72-81. doi: 10.1016/j.colsurfa.2010.04.040.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies