Tsunami hazard mapping methodology and its implementation for the Far Eastern coast of the Russian Federation

Cover Page

Cite item

Full Text

Abstract

The overview maps of tsunami hazard for the Far East coast of Russian Federation are created. The methodological basis of the PTHA (Probabilistic Tsunami Hazard Assessment) approach are discussed, as well as the problems of constructing seismotectonic models of the main tsunamigenic zones, mathematical models and algorithms for calculating probability estimates of tsunami hazard, and some problems of applying the RTHA methodology both related to the lack of observation data and with the complexity of performing a large amount of scenario calculations. Examples of overview tsunami hazard maps for various recurrence intervals, constructed using the PTHA methodology and presented using the “WTMap” application, are given.

About the authors

Yu. I. Shokin

Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences

Email: chubarov@ict.nsc.ru

Academician of the Russian Academy of Sciences

Russian Federation, 6, Lavrentiev avenue, Novosibirsk, 630090

V. K. Gusiakov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences

Email: chubarov@ict.nsc.ru
Russian Federation, 6, Prospect Akad. Lavrentieva, Novosibirsk, 630090

V. A. Kikhtenko

Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences

Email: chubarov@ict.nsc.ru
Russian Federation, 6, Lavrentiev avenue, Novosibirsk, 630090

L. B. Chubarov

Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: chubarov@ict.nsc.ru
Russian Federation, 6, Lavrentiev avenue, Novosibirsk, 630090

References

  1. Power W., Downes G. Tsunami Hazard Assessment. Volcanic and Tectonic Hazard Assessment for Nuclear Facilities / C. Connor. N. Chapman, L. Connor (Eds). Cambridge Univ. Press, 2009. P. 276-306. doi: 10.1017/CBO9780511635380.012.
  2. Knighton J., Bastidas L. A Proposed Probabilistic Seismic Tsunami Hazard Analysis Methodology // Nat. Hazards. 2015. V. 78. P. 699-723. doi: 10.1007/s11069-015-1741-7.
  3. Grezio A., Babeyko A., Baptista M.A., et al. Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications // Rev. of Geophysics. 2017. V. 55. P. 1158-1198. doi: 10.1002/2017RG000579.
  4. Гусяков В.К. Цунами на Дальневосточном побережье России: историческая перспектива и современная проблематика // Геология и геофизика. 2016. № 9. С. 1601-1615. doi: 10.15372/GiG20160901.
  5. Shokin Yu.I, Babailov V.V., Beisel S.A., et al. Mathematical Modeling in Application to Regional Tsunami Warning Systems Operations // Comput. Sci. and High Perform. Computing III: Notes on Numerical Fluid Mechanics and Multidisciplinary Design / E. Krause, Yu.I. Shokin, M. Resch, N. Shokina (Eds). V. 101. B.: Heidelberg: Springer-Verlag, 2008. P. 52-68. doi: 10.1007/978-3-540-69010-8_6.
  6. MacCormack R.W. The Effect of Viscosity in Hypervelocity Impact Cratering // J. Spacecraft and Rockets. 2003. V. 40. № 5. P. 757-763. doi: 10.2514/2.6901.
  7. Okada Y. Surface Deformation due to Shear and Tensile Faults in a Half Space // Bulletin of the Seismological Society of America. January 1992. № 82 (2). Р. 1018-1040. doi: 10.1016/0148-9062(86)90674-1.
  8. Лобковский Л.И., Сорохтин О.Г. Деформация литосферных плит в зонах поддвига // Океанология. Геофизика океана. Т. 2. Геодинамика. М.: Наука, 1979. C. 194-203.
  9. HTDB/WLD (Historical Tsunami Database for the World Ocean), 2000 ВС to Present, Tsunami Laboratory, ICMMG SB RAS, Novosibirsk, 2018. http://tsun.sscc.ru/nh/tsunami.php
  10. Интегрированная информационная система конструирования обзорных карт цунамирайонирования побережий с использованием исторических и расчетных данных / В.А. Кихтенко, В.К. Гусяков, Л.Б. Чубаров. Свидетельство о гос. регистрации программы для ЭВМ 2017618398. 2017. https://wtmap.dokku.lesemc.nsc.ru/

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies