Seismoacoustics in Arctic seas: fundamental principles for improving monitoring technologies

封面

如何引用文章

全文:

详细

The results of the development of scientific foundation of technology for passive geohydroacoustic monitoring of Arctic seas are presented, including theoretical studies of the conditions for the origin and propagation of wave fields generated by induced geodynamic processes in the layered structure “lithosphere – hydrosphere – ice cover”, the solution of a separate class of problems within the framework of a fundamental scientific problem, related to the search for innovative, environmentally safe geophysical technologies to outline the local heterogeneities, as well as the creation of prototypes, laboratory and full-scale testing of prototypes of new generation ice-based geohydroacoustic buoys. The method for estimating parameters of floating ice (thickness, density, Young’s modulus, Poisson’s ratio) in passive mode was proposed and tested in a field experiment. Particular attention is paid to the state of scientific and practical groundwork regarding the possibilities of developing methods for passive geohydroacoustic monitoring of the Arctic seas.

作者简介

A. Sobisevich

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sobisevich@yandex.ru

член-корреспондент РАН, заведующий лабораторией 703

俄罗斯联邦, Moscow

V. Dmitrichenko

JSC Concern “Sea Underwater Weapon Gidropribor”

Email: dmitrichenko-v@yandex.ru

кандидат технических наук, начальник отделения

俄罗斯联邦, St. Petersburg

参考

  1. Laverov N.P., Roslov Y.V., Lobkovsky et al. Prospects of Sea-Floor Seismography in the Russian Federation // The Arctic: ecology and economy. 2011, no. 4, pp. 4–13.
  2. Laverov N.P., Lobkovsky L.I., Kononov M.V. et al. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf // Geotectonics. 2013, no. 1, pp. 1–30.
  3. Artyushkov E.V., Chekhovich P.A. Lomonosov ridge and the Eastern Arctic Shelf as elements of an integrated lithospheric plate: Comparative analysis of wrench faults // Doklady Earth Sciences. 2017, no. 1, pp. 485–489.
  4. Laverov N.P., Bogoyavlensky V.I., Bogoyavlensky I.V. Fundamental aspects of the rational development of oil and gas resources of the Arctic and Russian shelf: strategy, prospects and challenges // The Arctic: ecology and economy. 2016, no. 2, pp. 4–13.
  5. Kontorovich A.E. Ways of Developing Oil and Gas Resources in the Russian Sector of the Arctic // Herald of the Russian Academy of Sciences. 2015, no. 3, pp. 213–222.
  6. Marine seismic exploration / Ed. by A.N. Telegin, Moscow: Geoinformmark, 2004. (In Russ.)
  7. Litvak A.G. Acoustics of the Deepwater Part of the Arctic Ocean and of Russia’s Arctic Shelf // Herald of the Russian Academy of Sciences. 2015, no. 3, pp. 239–250.
  8. Mordret A., Landès M., Shapiro N.M. et al. Ambient noise surface wave tomography to determine the shallow shear velocity structure at Valhall: depth inversion with a Neighbourhood Algorithm // Geophys. J. Int. 2014, vol. 198, pp. 1514–1525.
  9. Yanovskaya Y.B., Lyskova E.L., Koroleva T.Yu. Radial Anisotropy in the European Upper Mantle from Surface Waves // Physics of the Earth. 2019, no. 2, pp. 3–14.
  10. Burov V.A., Sergeev S.N., Shurup A.S. The use of low-frequency noise in passive tomography of the ocean // Acoustical Physics. 2008, no. 1, pp. 42–51.
  11. Godin O.A., Zabotin N.A., Goncharov V.V. Ocean tomography with acoustic daylight // Geophys. Res. Lett. 2010, vol. 37, L13605.
  12. Kulchin Y.N., Kamenev O.T., Petrov Y.S. et al. Developing Physical Bases for Low-Frequency Acoustic Tomography in the Arctic Shelf Using Fiberoptic Geophones // Bulletin of the Russian Academy of Sciences: Physics. 2018, no. 5, pp. 487–490.
  13. Johansen T.A., Ruud B.O., Tømmerbakke R., Jensen K. Seismic on floating ice: data acquisition versus flexural wave noise // Geophysical Prospecting. 2019, vol. 67, pp. 532–549.
  14. Serripierri A., Moreau L., Boue P. et al. Recovering and monitoring the thickness, density, and elastic properties of sea ice from seismic noise recorded in Svalbard // The Cryosphere. 2022, vol.16, pp. 2527–2543.
  15. Sobisevich A.L., Presnov D.A., Sobisevich L.E., Shurup A.S. Localization of Geological Inhomogeneities on the Arctic Shelf by Analysis of the Seismoacoustic Wave Field Mode Structure // Doklady Earth Sciences. 2018, vol. 479 (1), pp. 355–357.
  16. Krylov A.A., Novikov M.A., Kovachev S.A. et al. Features of Seismological Observations in the Arctic Seas // J. Mar. Sci. Eng. 2023, vol. 11, 2221.
  17. Sobisevich A.L., Presnov D.A., Shurup A.S. Fundamentals of Passive Seismohydroacoustic Methods for Arctic Shelf Investigation // Acoustical Physics. 2021, no. 1, pp. 62–82.
  18. Mikhalevsky P.N., Sagen H., Worcester P.F. et al. Multipurpose acoustic networks in the integrated Arctic Ocean observing system // Arctic. 2015, vol. 68, pp. 11–27.
  19. Dmitrichenko V.P. Hydroacoustic antennas of underwater vehicles. St. Petersburg: JSC «Concern “MPO – Gidropribor”», 2024. (In Russ.)
  20. Presnov D.A., Sobisevich A.L., Shurup A.S. Determination of ice cover parameters using seismoacoustic noise // Acoustical Physics. 2023, no. 5, pp. 752–737.
  21. Tikhotskii S.A., Presnov D.A., Sobisevich A.L., Shurup A.S. The Use of Low-Frequency Noise in Passive Seismoacoustic Tomography of the Ocean Floor // Acoustical Physics. 2021, no. 1, pp. 91–99.
  22. Sobisevich A.L., Presnov D.A., Tubanov T.A. The Baikal Ice-Based Seismoacoustic Experiment // Doklady Earth Sciences. 2021, no. 1, pp. 76–79.
  23. Sobisevich A.L., Presnov D.A., Agafonov V.M., Sobisevich L.E. New-Generation Autonomous Geohydroacoustic Ice Buoy // Seismic Instruments. 2018, no. 6, pp. 677–681.
  24. Dmitrichenko V.P., Presnov D.A., Rudenko O.V. et al. Patent for invention no. RU2646528 “Method for searching for minerals on the shelf of seas covered with ice”. Priority date 07.12.2016, published 05.03.2018, bul. no. 7. (In Russ.)
  25. Curtis A., Gerstoft P., Sato H. et al. Seismic interferometry –Turning noise into signal // The Leading Edge. 2006, vol. 25, pp. 1082–1092.
  26. Godin O.A. Acoustic noise interferometry in a time-dependent coastal ocean // J. Acoust. Soc. Am. 2018, vol. 143, pp. 595–604.
  27. Shapiro N.M., Campillo M., Stehly L., Ritzwoller M.H. High-resolution surface-wave tomography from ambient seismic noise // Science. 2005, vol. 307 (5715), pp. 1615–1618.
  28. Snieder R., Wapenaar K. Imaging with ambient noise // Physics Today. 2010, vol. 63, pp. 44–49.
  29. Weaver R.L., Lobkis O.I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies // Phys. Rev. Lett. 2001, vol. 87, 134301.
  30. Пескин М., Шредер Д. Введение в квантовую теорию поля. Ижевск: НИЦ “Регулярная и хаотическая динамика”, 2001.
  31. Peskin M., Schroeder D. Introduction to quantum field theory. Izhevsk: SIC “Regular and chaotic dynamics”, 2001. (In Russ.)
  32. Weaver R.L., Lobkis O.I. Ultrasonics without a source: Thermal fluctuation correlations at MHz frequencies // Phys. Rev. Lett. 2001, vol. 87, 134301.
  33. Burov V.A., Sergeev S.N., Shurup A.S. Using short curved vertical arrays in ocean acoustic tomography // Acoustical Physics. 2009, vol. 55, pp. 240–252.
  34. Gordienko V.A., Ilyichev V.I., Zakharov L.N. Vector-phase methods in acoustics. Moscow: Nauka, 1989. (In Russ.)
  35. Sergeev S.N., Shurup A.S., Godin O.A. et al. Separation of acoustic modes in the Florida Straits using noise interferometry // Acoustical Physics. 2017, no. 1, pp. 76–85.
  36. Koulakov I.Yu. A View on Processes beneath Volcanoes through the Prism of Seismic Tomography // Herald of the Russian Academy of Sciences. 2013, no. 4, pp. 345–356.
  37. Chebotareva I.Ya. Methods for passive study of the geological environment using seismic noise // Acoustical Physics, no. 6, pp. 857–865.
  38. Gorbatikov A.V. Patent for invention no. RU2271554 “Method of seismic exploration”, priority date 03.25.2005, bul. no. 7. (In Russ.)
  39. Sobisevich A.L., Razin A.V. Geoacoustics of layered media. Moscow: Schmidt Institute of Physics of the Earth of the RAS, 2012. (In Russ.)
  40. Yanovskaya T.B. Surface wave tomography in seismological studies. St. Petersburg: Nauka, 2015. (In Russ.)
  41. Presnov D.A., Sobisevich A.L., Shurup A.S. Model of the geoacoustic tomography based on surface-type waves // Physics of Wave Phenomena. 2016, vol. 24, pp. 249–254.
  42. Bensen G.D., Ritzwoller M.H., Barmin M.P. et al. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements // Geophys. J. Int. 2007, vol. 169, pp. 1239–1260.
  43. Marsan D., Weiss J., Larose E., Metaxian J.-P. Sea-ice thickness measurement based on the dispersion of ice swell // J. Acoust. Soc. Am. 2011, vol. 131, pp. 80–91.
  44. Brekhovskikh L.M. Waves in layered media. Moscow: Nauka, 1973. (In Russ.)
  45. Katsnelson B.G., Petnikov V.G. Acoustics of the shallow sea. Moscow: Nauka, 1997. (In Russ.)
  46. Presnov D.A., Zhostkov R.A., Gusev V.A., Shurup A.S. Dispersion dependences of elastic waves in an ice-covered shallow sea // Acoustical Physics. 2014, no. 4, pp. 455–465.
  47. Agafonov V.M., Egorov I.V., Shabalina A.S. Operating principles and technical characteristics of a small-sized molecular-electronic seismic sensor with negative feedback // Seismic Instruments. 2014, vol. 50, pp. 1–8.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Results of numerical simulation of a random noise field received by two receivers spaced on a plane a – spatial distribution of random noise sources (points) relative to receivers (triangles); b – intercorrelation functions of two receivers spaced apart, which are obtained taking into account the contribution of various groups of sources marked with the appropriate color; vertical black lines correspond to true propagation times of signals between receivers [18]

下载 (36KB)
3. Fig. 2. Layout of a frozen geohydroacoustic information and measurement buoy (a) and amplitude-frequency and phase-frequency characteristics of molecular electronic seismic receivers (CME-4211V) and reference pendulum seismic receivers Guralp (CMG-3ESP) and Streckeisen (STS-1V/VBB) (b) 1 - primary converter; 2 – elements power supply; 3 – digital recorder and electronics unit

下载 (31KB)
4. Fig. 3. Dispersion dependences of the main modes of the seismohydroacoustic field at a reservoir depth of 30 m and an ice thickness of 1 m (a) and dispersion curves of bending-gravitational waves for different values of ice thickness (b) [18]

下载 (26KB)
5. Fig. 4. The scheme of experiments in ice conditions 1 – a model of a geohydroacoustic buoy; 2 – a vector piezoceramic receiver; 3 – a CM3-OS pendulum seismometer; 4 – a bottom molecular electronic seismic receiver; 5 - a hydrophone; 6 – a digital recorder; 7, 9 – pulse effects on the ice surface and on the bottom; 8 – a pulse source in the water column

下载 (30KB)
6. Fig. 5. An example of synchronous recording of a signal from a pulse source by seismometers at the bottom (bottom) and on the ice surface (top)

下载 (28KB)

版权所有 © Russian Academy of Sciences, 2024