Technical, hardware and software solutions for monitoring natural processes in the southern part of the Sea of Okhotsk

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This paper presents measuring systems that are used to monitor natural processes in the southern part of the Sea of Okhotsk. The research is carried out at the scientific hospital “Svobodny Cape”. The architecture of the devices is presented, which makes it possible to organize the registration of measurements and the transmission of wave data in real time. The results of recording abnormally large waves are obtained. Also, for the first time in this region, work was carried out to monitor the ice situation using radar. Laser interference devices have been installed at the Svobodny Cape scientific hospital to register variations of vibrations and waves flowing in geospheres. During the processing of full-scale data from laser interference devices, deformation anomalies characteristic of tsunamigenic earthquakes were detected, and patterns of transformation of vibrations and waves of different periods during the transition from one geosphere to another were studied.

全文:

受限制的访问

作者简介

A. A.I. Zaytsev

Special Research Bureau of Automation of Marine Research FEB RAS

编辑信件的主要联系方式.
Email: aizaytsev@mail.ru

член-корреспондент РАН, директор

俄罗斯联邦, Yuzhno-Sakhalinsk

G. Dolgikh

Pacific Oceanological Institute n.a. V.I. Ilyichev FEB RAS

Email: dolgikh@poi.dvo.ru

академик РАН, директор

俄罗斯联邦, Vladivostok

S. Dolgikh

Pacific Oceanological Institute n.a. V.I. Ilyichev FEB RAS

Email: sdolgikh@poi.dvo.ru

доктор технических наук, ведущий научный сотрудник

俄罗斯联邦, Vladivostok

E. Pelinovsky

Institute of Applied Physics of the RAS

Email: pelinovsky@ipfran.ru

доктор физико-математических наук, профессор, главный научный сотрудник

俄罗斯联邦, Nizhniy Novgorod

参考

  1. Dolgikh G.I. Principles of the designing single-coordinate laser strainmeters // Technical Physics Letters. 2011, vol. 37(3), pp. 204−206.
  2. Dolgikh G., Budrin S., Dolgikh S., Plotnikov A. Supersensitive Detector of Hydrosphere Pressure Variations // 2020, vol. 20(23), аrticle number 6998. doi: 10.3390/s20236998
  3. Dolgikh G.I., Chupin V.A., Gusev E.S., Timoshina G.A. Cyclonic process of the “voice of the sea” microseism generation and its remote monitoring // Remote Sens. 2021, 13, 3452. https://doi.org/10.3390/rs13173452
  4. Dolgikh G., Dolgikh S. Deformation Anomalies Accompanying Tsunami Origination // J. Mar. Sci. Eng. 2021, vol. 9(10), аrticle number 1144. https://doi.org/10.3390/jmse9101144
  5. Dolgikh G., Dolgikh S. Deformation Anomalies Accompanying Tsunami Origins near the Japanese Islands // J. Mar. Sci. Eng. 2023, vol. 11(11), аrticle number 2137. https://doi.org/10.3390/jmse11112137
  6. Dolgikh G., Dolgikh S., Chupin V. et al. Registration of Nonlinear Hydrophysical Disturbances – Rogue Waves in Full-Scale Conditions // J. Mar. Sci. Eng. 2022, vol. 10(12), аrticle number 1997. https://doi.org/10.3390/jmse10121997
  7. Kabatchenko I.M., Kos’yan R.D., Krasitskii V.P. et al. Operating experience with a BM-04 wave-tide gauge // Oceanology. 2007, vol. 47, no 1, pp. 135−140.
  8. Kuznetsov K.I., Kovalev P.D., Kurkin A.A., Pelinovsky E.N. Features of wind waves at the southeastern coast of Sakhalin according to bottom pressure measurements // Izvestiya of the RAS. Atmospheric and Oceanic Physics. 2014, vol. 50, no. 2, pp. 213−220.
  9. Lukhnov A.O., Chernov A.G., Kurkin A.A., Polukhina O.E. Problems of creating a hardware and software complex for studying the hydrodynamics of the shelf zone // Proceedings of the Academy of Engineering Sciences named after A.M. Prokhorov. 2006, vol. 18, pp. 120−123.
  10. https://www.aanderaa.com
  11. Zaitsev A.I., Kurkin A.A., Chernov A.G. et al. The tsunami on Sakhalin on August 2, 2007: mareograph evidence and numerical simulation // Russian Journal of Pacific Geology. 2009, vol. 3, no. 5, pp. 437-442.
  12. Zaitsev A.I., Kurkin A.A., Chernov A.G. et al. The Nevelsk tsunamion Augest 2, 2007: Instrumental data numerical modeling// Doklady Earth Sciences. 2008, vol. 421, no. 1, pp. 867−870.
  13. Levin B.V., Chernov A.G., Shevchenko G.V. et al. The first results of long wave registration in the range of tsunami periods in the region of Kuril ridge on a distributed station network // Doklady Earth Sciences. 2009, vol. 427, no. 1, pp. 874−879.
  14. Kurkin A.A., Zezyulin D.V., Makarov V.S. et al. Studies of coastal areas of the Sea of Okhotsk using a land-based mobile robot // Ecological systems and devices. 2016, no. 8, pp. 11−17.
  15. Zaytsev A., Zeziulin D., Belyakov V. et al. Coastal monitoring oft he Okhotsk sea using an autonomous mobile robot. Science of Tsunami Hazards. 2017, vol. 36, no. 1, pp. 1−12.
  16. Appel I.L. Using the analysis of observational data on drift, wind and atmospheric conditions to determine seasonal changes in forces acting on the ice sheet // Problems of the Arctic and Antarctic. 1994, Iss. 67−68, pp. 90−107.
  17. http://www.aviso.oceanobs.com/en/data/products/wind-waves-products/index.html
  18. Kuznetsov K.I., Pelinovsky E.N., Kurkin A.A., Zaitsev A.I. Restoration of surface waves from measurements of pressure variations on the seabed. // Bulletin of the Moscow State Regional University. Series: Natural Sciences. 2013, no. 3, pp. 110−117.
  19. Fessel D., Marko J., Melling H. Wave measurements using upward looking in marginal and polar sea ice regimes // ASL Environmental sciences. 2002 http://www.aslenv.com/reports/ASL%20Intl%20Waves%20Workshop.pdf
  20. Kurkin A.A., Pelinovsky E.N. Freak waves: facts, theory and modeling. Nizhny Novgorod: NSTU, 2004.
  21. Kharif C., Pelinovsky E. Physical mechanisms of the rogue wave phenomenon // European J Mechanics - B/Fluid. 2003, vol. 22, no. 6, pp. 603−634.
  22. Kharif Ch., Pelinovsky E., Slunyaev A. Rogue Waves in the Ocean. Springer Link, 2009.
  23. Slunyaev A., Didenkulova I., Pelinovsky E. Rogue waters. // Contemporary Physics. 2011, vol. 52, no. 6, pp. 571−590.
  24. Zaitsev A.I., Malashenko A.E., Pelinovsky E.N. Abnormally large waves near the southern coast of O. Sakhalin. // Fundamental and applied hydrophysics. 2011, vol. 4, no. 4, pp. 35−42.
  25. Slunyaev A.V., Kokorina A.V., Zaitsev A.I. et al. Dependence of probabilistic distribution of wave heights on physical parameters based on measurement results near Sakhalin Island. // Fundamental and applied hydrophysics. 2023, vol. 16, no. 3, pp. 18−29.
  26. http://sakhmeteo.ru/
  27. https://nctr.pmel.noaa.gov/Dart/
  28. Zaytsev A., Kurkin A., Pelinovsky E., Yalciner A.C. Numerical tsunami model NAMI-DANCE Science of Tsunami Hazards. 2019. Т. 38. № 4. С. 151−168.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The composition of the scientific hospital “Cape Svobodny”: 1 – laser nanobarograph; 2 – horizontal type laser deformograph; 3 – weather station; 4 − laser hydrophone

下载 (43KB)
3. Fig. 2. Fragments of recordings and dynamic spectrogram of laser interference devices: a - dynamic spectrogram of recording the “voice of the sea” with a laser deformograph; b – fragment of recording a deformation anomaly with a laser deformograph; c, d – fragments of recordings of a laser meter of pressure variations of the hydrosphere during the formation of meteotsunami and killer waves

下载 (18KB)
4. Fig. 3. Autonomous surface wave recorder “Wavograph” (a) 1 – hydrostatic pressure channel, 2 − temperature channel, 3 – non-volatile memory (SD card), 4 − control and data acquisition controller, 5 − electronics unit, 6 − COM port with an exchange rate of 115,200 baud, 7 − lithium batteries +3.2 V, 8 – connector for putting the station into operation; (b) autonomous bottom pressure recorder (ARV-K12), developed by the Uglich Design Bureau

下载 (49KB)
5. Fig. 4. Fragments of experimental studies

下载 (19KB)
6. Fig. 5. Fixation of waves in the Sea of Okhotsk during a three-point storm (a), dependence of the wave height on the distance to the radar installation point (b)

下载 (29KB)
7. Fig. 6. View of the radar monitor after processing by the radar processor

下载 (34KB)
8. Fig. 7. Significant wave heights based on natural data obtained in the area of Cape Svobodny in 2011-2012; data processing using the hydrostatic formula (red line), using frequency correction (blue), satellite altimetry data (green line) Note: the full-color version of the drawings for the article is available in the electronic version of the Bulletin of the Russian Academy of Sciences.

下载 (29KB)
9. Figure 8. Frequency of observation of killer waves in the southern part of the Sea of Okhotsk

下载 (9KB)
10. Fig. 9. Examples of abnormally large waves (killer waves) recorded off Cape Svobodny: a − December 8, 2011, height 4.48 m (H/Hs = 2.43); b − December 24, 2011, height 6.23 m (H/Hs = 2.29)

下载 (34KB)
11. Fig. 10. Recording the signal of laser deformographs. The down arrow shows the time of the earthquake, the up arrow shows the registration of the tsunami

下载 (16KB)

版权所有 © Russian Academy of Sciences, 2024