Biomedical neurotechnologies: from the study of living systems to the correction of pathology of the nervous system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article, prepared based on a report presented at a scientific session of the general meeting of RAS members, is devoted to topical issues of the development of biomedical neurotechnologies in Russian Federation. The authors draw attention to the main directions, points of growth and the unique experience of the interdisciplinary and integrated approach of the Federal Medical Biological Agency and its research centers in solving fundamental and applied problems in the field of neuroscience, the development of innovative medicines, technologies for the treatment of diseases of the nervous system and neurorehabilitation.

Texto integral

Acesso é fechado

Sobre autores

V. Skvortsova

Federal Medical and Biological Agency

Email: fmba@fmba.gov.ru

член-корреспондент РАН

Rússia, Moscow

V. Belousov

Federal Center for Brain and Neurotechnology of the FMBA of Russia

Autor responsável pela correspondência
Email: belousov@fccps.ru

член-корреспондент РАН

Rússia, Moscow

Bibliografia

  1. Pak V.V, Ezeriņa D., Lyublinskaya O.G. et al. (2020) Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metab., no. 31 (3), pp. 642–653.
  2. Kostyuk A.I., Tossounian M.A., Panova A.S. et al. (2022) Hypocrates is a genetically encoded fluorescent biosensor for (pseudo)hypohalous acids and their derivatives. Nat. Commun., no. 13 (1), pp. 1–71.
  3. Kelmanson I.V., Shokhina A.G., Kotova D.A. et al. (2021) In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model. Redox Biol., no. 48, 102178.
  4. Kalinichenko A.L., Jappy D., Solius G.M. et al. (2023) Chemogenetic emulation of intraneuronal oxidative stress affects synaptic plasticity. Redox Biol., no. 60, 102604.
  5. Ermakova Y.G., Lanin A.A., Fedotov I.V. et al. (2017) Thermogenetic neurostimulation with single-cell resolution. Nat. Commun., no. 8, 15362.
  6. Nekrasov E.D., Vigont V.A., Klyushnikov S.A. et al. Manifestation of Huntington's disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener., no. 11, 27.
  7. Revah O., Gore F., Kelley K.W. et al. (2022) Maturation and circuit integration of transplanted human cortical organoids. Nature, no. 610 (7931), pp. 319–326.
  8. Джафарова М.Ю., Джафаров В.М., Сенько И.В., Белоусов В.В. (2022) Применение фокусированного ультразвука под контролем магнитно-резонансной томографии для лечения тремора при болезни Паркинсона. Клиническое наблюдение и обзор литературы // Российский неврологический журнал. № 6. С. 56–62. Jafarova M.Yu., Jafarov V.M., Senko I.V., Belousov V.V. (2022) Application of focused ultrasound under the control of magnetic resonance imaging for the treatment of tremor in Parkinson's disease. Clinical observation and literature review. Russian Neurological Journal, no. 6, pp. 56–62. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024