Thermohydrodynamics of lakes in the permafrost zone of Russia: retrospective assessment and forecast of changes in the 21st century

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The objective of the work is a retrospective and prognostic assessment of thermal and ice characteristics of lakes in the permafrost zone of the Russian Federation based on satellite information and mathematical modeling. The geographic location and area of the lake are determined using satellite images. Using geostatistical dependencies based on the area values of the reservoir, its average depth is found. The obtained value of the average depth is used as a parameter for calculating the thermohydrodynamic characteristics of the lake and its bottom sediments using the one-dimensional thermohydrodynamic model FLake. The ERA5 meteorological reanalysis data are the basis for the retrospective assessment of the reservoir characteristics; the forecast of the consequences of climate change by the end of the 21st century is made on the basis of SSP greenhouse gas emission scenarios into the atmosphere. Retrospective and prognostic calculations of the characteristics of unexplored and poorly studied lakes are performed without additional verification of the model and do not require labor-intensive in-kind measurements in hard-to-reach areas of permafrost. Retrospective (1940–2015) and prognostic (2016–2100) calculations of thermohydrodynamic characteristics of water and bottom sediments for hypothetical lakes located in the centroids of the studied lake regions were performed for 15 main lake regions covering the permafrost zone of Russia. The results of calculations of water mass heating and ice cover formation in lakes in the regions under consideration correspond to modern ideas about global warming in the northern regions of our country.

Full Text

Restricted Access

About the authors

S. A. Kondratiev

St. Petersburg FRC RAS

Author for correspondence.
Email: kondratyev@limno.ru

Institute of Limnology of the Russian Academy of Sciences

Russian Federation, St. Petersburg

S. D. Golosov

St. Petersburg FRC RAS

Email: sergey_golosov@mail.ru

Institute of Limnology of the Russian Academy of Sciences

Russian Federation, St. Petersburg

I. S. Zverev

St. Petersburg FRC RAS

Email: iliazverev@mail.ru

Institute of Limnology of the Russian Academy of Sciences

Russian Federation, St. Petersburg

A. M. Rasulova

St. Petersburg FRC RAS

Email: ARasulova@limno.ru

Institute of Limnology of the Russian Academy of Sciences

Russian Federation, St. Petersburg

References

  1. Измайлова А.В. Водные ресурсы озёр Российской Федерации // География и природные ресурсы. 2016. № 4. С. 5–14. / Izmailova A.V. Water resources of lakes in the Russian Federation // Geography and Natural Resources. 2016, no. 4, pp. 5–14. (In Russ.)
  2. Кравцова В.И., Родионова Т.В. Исследование динамики площади и количества термокарстовых озёр в различных районах криолитозоны России по космическим снимкам // Криосфера Земли. 2016. Т. 20. № 1. С. 81–89. / Kravtsova V.I., Rodionova T.V. Study of the dynamics of the area and number of thermokarst lakes in different regions of the Russian cryolithozone using space images // Earth Cryosphere. 2016, vol. 20, no. 1, pp. 81–89. (In Russ.)
  3. Пшеничников А.Е. Исследование динамики термокарстовых озёр в различных районах криолитозоны России по космическим снимкам за первые два десятилетия XXI века // Геодезия и картография. 2021. Т. 82. № 7. С. 32–42. doi: 10.22389/0016-7126-2021-973-7-32-42 / Pshenichnikov A.E. Study of thermokarst lakes dynamics in different regions of the Russian cryolithozone based on space images for the first two decades of the XXI century // Geodesy and Cartography. 2021, vol. 82, no. 7, pp. 32–42. doi: 10.22389/0016-7126-2021-973-7-32-42 (In Russ.)
  4. Брыксина Н.А., Полищук Ю.М. Ландшафтно-геокриологический анализ изменения количества озёр на территории Западной Сибири с использованием космических снимков // Проблемы окружающей среды и природных ресурсов. 2016. № 5. С. 36–45. / Bryksina N.A., Polishchuk Y.M. Landscape-geocryological analysis of changes in the number of lakes on the territory of Western Siberia using space images // Problems of Environment and Natural Resources. 2016, no. 5, pp. 36–45. (In Russ.)
  5. Румянцев В.А. Озёра азиатской части России. СПб.: Своё издательство, 2017. / Rumyantsev V.A. Lakes of the Asian part of Russia. SPb.: Svoy publishing house, 2017. (In Russ.)
  6. Измайлова А.В. Озёра России. Закономерности распределения, ресурсный потенциал. СПб.: Папирус, 2018. / Izmailova A.V. Lakes of Russia. Regularities of distribution, resource potential. SPb.: Papyrus, 2018. (In Russ.)
  7. Реки и озёра мира. Энциклопедия / Гл. ред. В.И. Данилов-Данильян. М.: Энциклопедия, 2012. / Rivers and lakes of the world. Encyclopedia / Ed. by V.I. Danilov-Danilyan. Moscow: Encyclopedia Publishing House, 2012. (In Russ.)
  8. Румянцев В.А., Драбкова В.Г., Измайлова А.В. Озёра европейской части России. СПб.: ЛЕМА, 2015. / Rumyantsev V.A., Drabkova V.G., Izmailova A.V. Lakes of the European part of Russia. SPb.: LEMA, 2015. (In Russ.)
  9. Национальный атлас России. Т. 2. Природа. Экология / Гл. ред. А.В. Бородко, гл. ред. тома В.М. Котляков. М.: Картография, 2007. / National Atlas of Russia. Vol. 2. Nature. Ecology / Editor-in-Chief A.V. Borodko, Editor-in-Chief of the volume V.M. Kotlyakov. Moscow: Cartography, 2007. (In Russ.)
  10. Свидетельство о государственной регистрации базы данных № 2015621549 Российская Федерация. Озёра мира WORLDLAKE: № 2015620713: заявл. 15.06.2015: опубл. 13.10.2015 / Н.В. Кочков, С.В. Рянжин; заявитель Федеральное государственное бюджетное учреждение науки Институт озероведения Российской академии наук (ИНОЗ РАН). / Certificate of state registration of database No. 2015621549 Russian Federation. WORLDLAKE World Lakes: No. 2015620713: claimed 15.06.2015: published 13.10.2015 / N.V. Kochkov, S.V. Ryanzhin; applicant Federal State Budgetary Institution of Science Institute of Limnology of the Russian Academy of Sciences (INOZ RAS). (In Russ.)
  11. Golosov S., Kirillin G. A parameterized model of heat storage by lake sediments // Environmental Modelling & Software. 2010, vol. 25, no. 6, pp. 793–801. doi: 10.1016/j.envsoft.2010.01.002
  12. Kirillin G., Nützmann G., Hochschild J. et al. FLake-Global: Online lake model with worldwide coverage // Environmental Modelling & Software. 2011, vol. 26, no. 5, pp. 683–684.
  13. Mironov D., Heise E., Kourzeneva E. et al. Implementation of the lake parameterization scheme Flake into the numerical weather prediction model COSMO // Boreal environ. Res. 2010, vol. 15, pp. 218–230.
  14. Mironov D.V. Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model // COSMO Technical Report. No. 11. Offenbach am Main: German Weather Service, 2008.
  15. Zverev I.S., Golosov S.D., Kondratiev S.A., Rasulova A.M. Procedure for Remote Assessment of the Characteristics of Unexplored Lakes in the Continental Part of the Russian Tundra // Doklady Earth Sciences. 2023, vol. 511, no. 2, pp. 726–731. doi: 10.1134/s1028334x23600779
  16. Рянжин С.В., Ульянова Т.Ю. Геоинформационная система “озёра мира” – GIS WORLDLAKE // Доклады Академии наук. 2000. Т. 370. № 4. С. 542–545. / Ryanzhin S.V., Ulyanova T.Yu. Geoinformation system “lakes of the world” – GIS WORLDLAKE // Reports of the Academy of Sciences. 2000, vol. 370, no. 4, pp. 542–545. (In Russ.)
  17. Messager M., Lehner B., Grill G., Nedeva I., Schmitt O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach // Nat Commun. 2016, vol. 7 (1), 13603. doi: 10.1038/ncomms13603
  18. IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2021. doi: 10.1017/9781009157896
  19. Семёнов С.М., Гладильщикова А.А. Сценарии антропогенных изменений климатической системы в XXI веке // Фундаментальная и прикладная климатология. 2022. Т. 8. № 1. С. 75–106. doi: 10.21513/2410-8758-2022-1-75-106 / Semenov S.M., Gladilshchikova A.A. Scenarios of anthropogenic changes in the climate system in the XXI century // Fundamental and Applied Climatology. 2022, vol. 8, no. 1, pp. 75–106. doi: 10.21513/2410-8758-2022-1-75-106 (In Russ.)
  20. Кондратьев С.А., Бовыкин И.В. Влияние возможных климатических изменений на гидрологический режим системы водосбор–озеро // Метеорология и гидрология. 2003. № 10. С. 86–96. / Kondratyev S.A., Bovykin I.V. Influence of possible climatic changes on the hydrological regime of the watershed-lake system // Meteorology and Hydrology. 2003, no. 10, pp. 86–96. (In Russ.)
  21. Тержевик А.Ю., Пальшин Н.И., Голосов С.Д. и др. Гидрофизические аспекты формирования кислородного режима мелководного озера, покрытого льдом // Водные ресурсы. 2010. Т. 37. № 5. С. 568–579. / Terzhevik A.Yu., Palshin N.I., Golosov S.D. et al. Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake covered // Water Resources. 2010, vol. 37, no. 5, pp. 568–579. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Lake regions of the Russian Federation located in the permafrost zone: I – zone of rare-island, island and massive-island permafrost distribution with a permafrost thickness of 0–100 m, II – zone of continuous permafrost distribution with a thickness of 50–300 m, III – with a thickness of 100–400 m, IV – with a thickness of 200–600 m, V – with a thickness of 400–900 m and lower. Red line – boundaries of lake regions [6]; black line – boundaries of the Russian Federation; dots – centroids of the corresponding lake regions

Download (1MB)
3. Fig. 2. Scheme of retrospective and prognostic assessment of abiotic characteristics of unstudied lakes using remote sensing and mathematical modeling methods

Download (1MB)
4. Fig. 3. Results of calculating the average annual values of water temperature, maximum ice thickness and duration of freeze-up in 1940, 2015 and 2100 (according to climate scenarios SSP-2.6 and SSP-8.5) for 15 hypothetical lakes located in the centroids of the studied lake regions (numbers – in accordance with Fig. 1 and Table 1)

Download (2MB)
5. Fig. 4. Retrospective (Era5) and predictive (SSP-2.6 and SSP-8.5) estimates of the dynamics of the average annual temperature of the water mass and the maximum thickness of the ice cover (thick lines are the five-year moving average) for lakes located in the centroids of regions No. 14 (I) and No. 6 (II) for the period 1940–2100.

Download (940KB)
6. Fig. 5. Retrospective (Era5 2015) and predictive (SSP-2.6 2100 and SSP-8.5 2100) estimates of the intra-annual dynamics of heat flux through the bottom and the thickness of the seasonal thawing layer (STL) of bottom sediments for lakes located in the centroids of regions 14 (a, c) and 6 (b, d) in 2015 and 2100.

Download (1MB)

Copyright (c) 2025 Russian academy of sciences