Application of cavitation on a laser heating element in surgery

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The article discusses the phenomenon of laser cavitation initiated at the tip of an optical fiber immersed in a liquid under the action of continuous laser radiation. The properties of flooded cumulative jets arising from the collapse of cavitation bubbles are investigated. It is shown that in free space, jets transfer heat through a liquid, and in the case of cavitation inside a tube filled with liquid, they lead to an inversion motion of the liquid. The practical use of the identified effects in medicine allows for effective surgical treatment of vascular diseases, cysts, acute and chronic infected wounds.

Texto integral

Acesso é fechado

Sobre autores

Mikhail Guzev

Institute for Applied Mathematics of the Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: guzev@iam.dvo.ru

академик РАН, директор

Rússia, Vladivostok

Vladimir Chudnovsk

Ilyichev Pacific Oceanological Institute of the Far Eastern Branch of the Russian Academy of Sciences

Email: vm53@mail.ru

доктор биологических наук, ведущий научный сотрудник

Rússia, Vladivostok

Ivan Abushkin

South Ural State Medical University

Email: ivanabushkin@mail.ru

доктор медицинских наук, профессор кафедры общей и детской хирургии

Rússia, Chelyabinsk

Bibliografia

  1. Sinibaldi G., Occhicone A., Alves Pereira F. et al. Laser induced cavitation: Plasma generation and breakdown shockwave // Phys. Fluids. 2019, vol. 31 (10), 103302.
  2. Koch M., Rosselló J.M., Lechner C. et al. Dynamics of a Laser-Induced Bubble above the Flat Top of a Solid Cylinder – Mushroom-Shaped Bubbles and the Fast Jet // Fluids. 2022, vol. 7 (1), 2.
  3. Ohl C.D., Arora M., Dijkink R. et al. Surface cleaning from laser-induced cavitation bubbles // Applied physics letters. 2006, vol. 89, 074102.
  4. Dular M., Požar T., Zevnik J., Petkovšek R. High speed observation of damage created by a collapse of a single cavitation bubble // Wear. 2019, vol. 418–419, pp. 13–23.
  5. Hu J., Dirie N.I., Yang J. et al. Percutaneous Ureteroscopy Laser Unroofing – A Minimally Invasive Approach for Renal Cyst Treatment // Sci. Rep. 2017, vol. 7, 14445.
  6. Dowlatshahi K., Francescatti D.S., Bloom K.J. Laser Therapy for Small Breast Cancers // Am. J. Surg. 2002, vol. 184, pp. 359–363.
  7. Tontini G.E., Neumann H., Pastorelli L. et al. Thulium Laser in Interventional Endoscopy: Animal and Human Studies // Endoscopy. 2017, vol. 49, pp. 365–370.
  8. Беликов А.В. Оптотермические волоконные конвертеры для лазерной медицины. СПб: Университет ИТМО, 2020. Belikov A.V. Optothermal fiber converters for laser medicine. St. Petersburg: ITMO University, 2020. (In Russ.)
  9. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water and biotissues nearby optical fiber tip // INTECH Open Access Publisher. 2011, pp. 95−118. doi: 10.13140/2.1.4838.9122.
  10. Yusupov V.I., Chudnovskii V.M., Bagratashvili V.N. Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid // Laser Physics. 2010, vol. 20, no. 7, pp. 1641–1646.
  11. Kulik A.V., Mokrin S.N., Kraevskii A.M. et al. Features of dynamics of a jet flow generated on a laser heater by surface boiling of liquid // Technical Physics Letters. 2022, vol. 48, no. 1, pp. 60–63.
  12. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Selective Laser Heating of Closed Cavity Shells Filled with Liquid // Doklady Physics. 2022, vol. 67, no. 12, pp. 491–494.
  13. Mokrin S.N., Tereshko D.A., Kulik A.V. et al. Physical mechanisms of laser thermotherapy of cysts // Heat Transfer Research. 2023, vol. 54 (4), pp. 11–24.
  14. Чудновский В.М., Гузев М.А., Дац Е.П., Кулик А.В. Эффект ускоренного всасывания жидкости в трубке при лазерной кавитации на лазерном нагревательном элементе // Доклады РАН. Физика, технические науки. 2023. Т. 513. С. 41–47. Chudnovskii V.M., Guzev M.A., Dats E.P., Kulik A.V. The effect of accelerated absorption of liquid in a tube during laser cavitation on a laser heating element // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 513, pp. 41–47. (In Russ.)
  15. Гузев М.А., Василевский Ю.В., Дац Е.П. и др. Лазерная кавитация в трубке, погружённой в ограниченный объём, заполненный жидкостью // Доклады РАН. Физика, технические науки. 2024. Т. 519. С. 19–25. Guzev M.A., Vassilevski Yu.V., Dats E.P. et al. Laser cavitation in a tube immersed in a confined volume filled with liquid // Reports of the Russian Academy of Sciences. Physics, Technical Sciences. 2023, vol. 519, pp. 19–25. (In Russ.)
  16. Abushkin I.A., Privalov V.A., Lappa A.V., Minaev V.P. Fiber 1.56–1.9 μm lasers in treatment of vascular malformations in children and adults Progress in Biomedical Optics and Imaging // Proceedings of SPIE. 2013, vol. 8565, 85650V.
  17. Meire M., De Moor R.J.G. Principle and antimicrobial efficacy of laser-activated irrigation: A narrative review // International Endodontic Journal. 2024, no. 7 (57), pp. 841–860.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Flooded jet of heated liquid propagating from the end of an optical fibre with a quartz diameter of 0.6 mm, on which a carbon layer absorbing laser radiation with a wavelength of 0.97 µm has been applied (illumination by green radiation from a pilot laser)

Baixar (150KB)
3. Fig. 2. Shadow photo of flooded hot liquid jets inside the cuvette at laser powers of 7, 5, 3, and 1.5 W (top) and the position of the hot jet at different time points at 3 W (bottom)

Baixar (166KB)
4. Fig. 3. Images of growth and collapse of a vapour bubble in the vicinity of the tip of an optical fibre placed in a glass tube

Baixar (104KB)
5. Fig. 4. Dynamics of the vapour phase of the cavitation bubble and liquid flows

Baixar (654KB)
6. Fig. 5. External view of venous malformation of the right foot of a 16-year-old patient

Baixar (178KB)
7. Fig. 6. Echogram of the initial venous malformation of the right foot (top) and during intrathecal laser thermotherapy (bottom)

Baixar (296KB)
8. Fig. 7. External appearance of the foot after intrathecal laser photocoagulation and fragment of the echogram of the pathological area

Baixar (328KB)
9. Fig. 8. Radiographs of a 10-year-old child with an aneurysmal cyst of the proximal part of the left fibula

Baixar (255KB)
10. Fig. 9. Bone radiograph of the left tibia (a) and its appearance two years after laser thermotherapy (b)

Baixar (372KB)
11. Fig. 10. Necrosis of the skin flap on the anterior surface of the right tibia of a 12-year-old child after excision of an extensive melanocytic nevus (a) and the wound on the 6th day after necrotomy (b)

Baixar (251KB)
12. Fig. 11. Wound 14 days after necratomy (a), after 9 sessions of laser cavitation on the day of plasty with a free dermatome perforated skin flap (b) and on the 6th day after skin plasty (c)

Baixar (340KB)
13. Fig. 12. Ulcer of the left tibia of a 77-year-old patient at the time of admission (a), 20 days later and after 14 sessions of laser cavitation (b), with applied dermatome flaps on the day of skin grafting (c) and 5 months after discharge from hospital (d)

Baixar (533KB)
14. Fig. 13. Purification of a purulent wound using laser cavitation in a tube placed in a cavity filled with physiological solution. 1 - medical laser; 2 - optical fibre; 3 - tube with inserted optical fibre

Baixar (114KB)

Declaração de direitos autorais © Russian academy of sciences, 2025