On the Connection between Sulfide Inclusions in Olivine from Tolbachik Volcano and Fluids from Mafic Cumulates beneath the Klyuchevskoy Group Volcanoes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The high activity of the Klyuchevskaya group of volcanoes in the Holocene suggests the accumulation of large volumes of solidified magmas with a low melt content (cumulates) and ultramafic-mafic intrusions in the earth's crust beneath it. In combination with the high fluid flux characteristic of the zone of rapid subduction of an ancient oceanic plate, this creates conditions for the formation of a fluid-magmatic ore-forming system. Sulfide inclusions in olivine, found in the eruption products of the Tolbachik volcano, may provide information about the composition of the fluid of such ore-forming systems. The interaction of a low-water reduced fluid with an oxidized (NNO+1.3) basaltic melt with a dissolved sulfur content of 2000–3000 ppm was theoretically modeled. It is shown that at a local fluid content of about 1–2 wt.%, sulfur in the melt is reduced and a sulfide melt is formed. The reduction of sulfur in the melt can also be caused by the dissolution of SO2, which is the main form of sulfur in the fluid with oxygen fugacity fO2 NNO+1.5. The reducing effect is explained by the higher degree of oxidation of sulfate sulfur in the melt (S6+) than the degree of oxidation of SO2 sulfur in the fluid (S4+). According to the modeling results, sulfide melt appears when 2000–3000 ppm sulfur is dissolved in the melt in the form of SO2. When interacting with a barren fluid with a low content of precious metals (PM), droplets of sulfides with a low PM content are formed, corresponding to the background composition of the magma. According to experimental data, in the reduced low-water fluid, the solubility of Pt and Pd in the form of carbonyls is high with low solubility of Au, whereas at high oxygen fugacity (NNO+1÷1.5) the solubility of gold is very high. When magma interacts with ore-forming fluids containing the first tens of ppm of precious metals, a sulfide melt is formed, enriched in Au (oxidized fluid) or Pt (reduced fluid). The liquidus temperature of olivine increases due to local dehydration of the magmatic melt when interacting with a low-water fluid (or oxidized brine), which leads to rapid growth of olivine at high undercooling. The localization of phase transitions at the boundary of fluid bubbles facilitates the capture of sulfide droplets by growing olivine crystals. The rare occurrence of sulfide droplet inclusions in olivine from Tolbachik volcano may be due to rapid dissipation of magma-fluid interaction effects at low average content of injected fluid, resulting in the sulfide phase dissolving in the magma.

Full Text

Restricted Access

About the authors

A. G. Simakin

Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences

Author for correspondence.
Email: simakin@iem.ac.ru
Russian Federation, Chernogolovka, Moscow district

References

  1. Добрецов Н.Л., Симонов В.А., Котляров А.В., Ступаков С.И. Особенности летучих компонентов в надсубдукционных базальтовых расплавах вулкана Толбачик (Камчатка) // Геология и геофизика. 2017. Т. 58. № 8. С. 1093—1115
  2. Нурмухамедов А.Г., Недядько В.В., Ракитов В.А., Липатьев М.С. Границы литосферы на Камчатке по данным метода обменных волн землетрясений // Вест. КРАУНЦ. Серия: Науки о Земле. 2016. Вып. 29. № 1. С. 35–52.
  3. Симакин А.Г., Девятова В.Н., Шапошникова О.Ю., Тютюнник О.А. Растворимость Pt и Pd в двухфазном маловодном флюиде состава NaCl-СO2-CO-(H2O) при низкой fO2 и высокой fCl2 (Т = 950оС и Р = 200 МПа). Добрецовские чтения: Наука из первых рук. Материалы Второй Всероссийской научной конференции, посвященной памяти академика РАН Н.Л. Добрецова (18–26 июля 2024 г. Новосибирск–Горный Алтай, Россия). 2024. С. 226–229. doi: 10.53954/9785605099628
  4. Ballhaus C., Berry R.F., Green D.H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
  5. Barnes S.J., Liu W. Pt and Pd mobility in hydrothermal fluids: Evidence from komatiites and from thermodynamic modelling // Ore Geol. Rev. 2012. V. 44. P. 49–58.
  6. Barnes S.J., Godel B., Gurer D. et al. Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni rich magmatic sulfides // Econom. Geol. 2013. V. 108. P. 1971–1982.
  7. Benard A., Nebel O., Ionov D.A. et al. Primary silica-rich picrite and high-Ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub-arc mantle // J. Petrol. 2016. V. 57. No 10. P. 1955–1982.
  8. Berkesi M., Guzmics T., Szabо C. et al. The role of CO2 rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths // Earth Planet. Sci. Lett. 2012. V. 331–332. P. 8–20.
  9. Borisov A., Behrens H., Holtz F. Ferric/ferrous ratio in silicate melts: A new model for 1 atm data with special emphasis on the effects of melt composition // Contrib. Mineral. Petrol. 2018. V. 173. P. 98.
  10. Boudreau A.E., Mathez E.A., McCallum I.S. Halogen geochemistry of the Stillwater and Bushveld Complexes: Evidence for transport of the platinum-group elements by Cl-rich fluids // J. Petrol. 1986. V. 27. No 4. P. 967–986. https://doi.org/10.1093/petrology/27.4.967
  11. Boulliung J., Wood B.J. Sulfur oxidation state and solubility in silicate melts // Contrib. Mineral. Petrol. 2023. V. 178. P. 56. https://doi.org/10.1007/s00410-023-02033-9
  12. Cameron E.M., Cogulu E.H., Stirling J. Mobilization of gold in the deep crust: Evidence from mafic intrusions in the Bamble belt, Norway // Lithos. 1993. V. 30. P. 151–166.
  13. Chaplygin I., Yudovskaya M., Vergasova L., Mokhov A. Native gold from volcanic gases at Tolbachik 1975–76 and 2012–13 Fissure Eruptions, Kamchatka // J. Volcanol. Geothermal Res. 2015. V. 307. P. 200–209. https://doi.org/10.1016/j.jvolgeores.2015.08.018.
  14. Churakov S.V., Gottschalk M. Perturbation theory based equation of state for polar molecular fluids: II. Fluid mixtures // Geochim. Cosmochim. Acta. 2003. V. 67. No 13. P. 2415–2425. https://doi.org/10.1016/S0016-7037(02)01348-0
  15. Dallai L., Cioni R., Boschi C., D’Oriano C. Carbonate-derived CO2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy // Earth Planet. Sci. Lett. 2011. V. 310. No 1–2. P. 84–95. https://doi.org/10.1016/j.epsl.2011.07.013
  16. Ding S., Plank T., Wallace P.J., Rasmussen D.J. Sulfur_X: A model of sulfur degassing during magma ascent // Geochemistry, Geophysics, Geosystems. 2023. V. 24. e2022GC010552. https:// doi.org/10.1029/2022GC010552
  17. Frost B.R. On the stability of sulfides, oxides, and native metals in serpentinite // J. Petrol. 1985. V. 26. Iss. 1. P. 31–63. https://doi.org/10.1093/petrology/26.1.31
  18. Frost B.R. Introduction to oxygen fugacity and its petrologic importance // Rev. Mineral. Geochem. 1991. V. 25. No 1. P. 1–9.
  19. Gerrits A.R., Inglis E.C., Dragovic B. et al. Release of oxidizing fluids in subduction zones recorded by iron isotope zonation in garnet // Nat. Geosci. 2019. V. 12. P. 1029–1033. https://doi.org/10.1038/s41561-019-0471-y
  20. Iacono-Marziano G., Le Vaillant M., Godel B.M. et al. The critical role of magma degassing in sulphide melt mobility and metal enrichment // Nature Communications. 2022. V. 13. P. 2359. https://doi.org/10.1038/s41467-022-30107-y
  21. Jayasuriya K.D., O’Neill H.St.C., Berry A.J., Campbell S.J. A messbauer study of the oxidation state of fe in silicate melts // Amer. Mineral. 2004. V. 89. P. 1597–1609.
  22. Jugo P.J., Wilke M., Botcharnikov R.E. Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: Implications for S speciation and S content as function of oxygen fugacity // Geochim. Cosmochim. Acta. 2010. V. 74. P. 5926–5938.
  23. Kamenetsky V.S., Zelenski M., Gurenko A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chemical Geol. 2017. V. 471. P. 92–110. https://doi.org/10.1016/j.chemgeo.2017.09.019
  24. Kiryukhin A., Chernykh E., Polyakov A., Solomatin A. Magma fracking beneath active volcanoes based on seismic data and hydrothermal activity observations // Geosci. 2020. V. 10. No 2. P. 52. https://doi.org/10.3390/geosciences10020052
  25. Koulakov I., Gordeev E.I., Dobretsov N.L. et al. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography // J. Volcanol. Geotherm. Res. 2013. V. 263. P. 75–91.
  26. Kutyrev A., Zelenski M., Nekrylov N. et al. Noble metals in arc basaltic magmas worldwide: A case study of modern and pre-historic lavas of the Tolbachik Volcano, Kamchatka // Front. Earth Sci. 2021. V. 9. 791465. https://doi.org/10.3389/feart.2021.791465
  27. Masotta M., Keppler H. Anhydrite solubility in differentiated arc magmas // Geochim. Cosmochim. Acta. 2015. V. 158. P. 79–102.
  28. Metrich N., Clocchiatti R. Sulfur abundance and its speciation in oxidized alkaline melts // Geochim. Cosmochim. Acta. 1996. V. 60. Iss. 21. P. 4151–4160. https://doi.org/10.1016/S0016-7037(96)00229-3
  29. Mironov N.L., Portnyagin M.V. Coupling of redox conditions of mantle melting and copper and sulfur contents in primary magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean) // Petrology. 2018. V. 26. No 2. P. 145–160.
  30. Moussallam Y., Edmonds M., Scaillet B. et al. The impact of degassing on the oxidation state of basaltic magmas: A case study of Kīlauea volcano // Earth Planet. Sci. Lett. 2016. V. 450. P. 317–325. https://doi.org/10.1016/j.epsl.2016.06.031
  31. Nash W.M., Smythe D.J., Wood B.J. Compositional and temperature effects on sulfur speciation and solubility in silicate melts // Earth Planet. Sci. Lett. 2019. V. 507. https://doi.org/10.1016/j.epsl.2018.12.006.
  32. Phillips G.N., Powell R. Formation of gold deposits: A metamorphic devolatilization model // J. Metamorph. Geol. 2010. V. 28. No 6. https://doi.org/10.1111/j.1525-1314.2010.00887.x
  33. Pokrovski G.S., Borisova A.Y., Bychkov A.Y. Speciation and transport of metals and metalloids in geological vapors // Rev. Mineral. Geochem. 2013. V. 76. P. 165–218.
  34. Ponomareva V., Melekestsev I., Braitseva O. et al. Late pleistocene-holocene volcanism on the Kamchatka Peninsula, Northwest Pacific Region // Geophysical Monograph Series. 2007. V. 172. P. 165–198. https://doi.org/10.1029/172GM15
  35. Prokofiev V.Y., Banks D.A., Lobanov K.V. et al. Exceptional concentrations of gold nanoparticles in 1.7 Ga fluid inclusions from the Kola Superdeep Borehole, Northwest Russia // Sci. Rep. 2020. V. 10. 1108. https://doi.org/10.1038/s41598-020-58020-8
  36. Pu X., Lange R.A., Moore G.M. Evidence of degassing-induced oxidation of relatively oxidized K-rich magmas caused by degassing of dissolved SO42− (S6+) component in the melt to SO2 (S4+) in the gas phase // Amer. Geophys. Union, Fall Meet. 2016. Abstract V31C-3109.
  37. Putirka K. Thermometers and Barometers for Volcanic Systems // Eds. K. Putirka, F. Tepley. Minerals, Inclusions and Volcanic Processes. Rev. Mineral. Geochem. Mineral. Soc. Amer. 2008. V. 69. P. 61–120.
  38. Righter K., Campbell A.J., Humayun M., Hervig R.L. Partitioning of Ru, Rh, Pd, Re, Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts // Geochim. Cosmochim. Acta. 2004. V. 68. Iss. 4. P. 867–880. https://doi.org/10.1016/j.gca.2003.07.005
  39. Ruefer A.C., Befus K.S., Thompson J.O., Andrews B.J. Implications of multiple disequilibrium textures in quartz-hosted embayments // Front. Earth Sci. 2021. V. 9. 742895. https://doi.org/10.3389/feart.2021.742895
  40. Shan J., Ye C., Chen S. et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation // J. Amer. Chem. Soc. 2021. V. 143. No 13. P. 5201–5211. https://doi.org/10.1021/jacs.1c01525
  41. Shi P., Saxena S.K. Thermodynamic modeling of the C-H-O-S fluid system // Amer. Mineral. 1992. V. 77. No 9–10. P. 1038–1049.
  42. Simakin A.G., Shaposhikova O.Y. Low crustal fluid reservoirs in ultramafic cumulates of Kamchatka // Petrology. 2023. V. 31. P. 705–717. https://doi.org/10.1134/S0869591123060036
  43. Simakin A., Salova T., Devyatova V., Zelensky M. Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 210–221.
  44. Simakin A.G., Salova T.P., Gabitov R.I., Isaenko S.I. Dry CO2-CO fluid as an important potential deep Earth solvent // Geofluids. 2016. V. 16. P. 1043–1057.
  45. Simakin A.G., Salova T.P., Gabitov R.I. et al. Gold solubility in reduced carbon-bearing // Fluid Geochem. Int. 2019. V. 57. No 4. P. 400–406.
  46. Simakin A., Salova T., Borisova A.Y. et al. Experimental study of Pt solubility in the CO-CO2 fluid at low fO2 and subsolidus conditions of the ultramafic-mafic intrusions // Minerals. 2021a. V. 11. No 2. https://doi.org/10.3390/min11020225
  47. Simakin A.G., Salova T.P., Shaposhnikova O.Y. et al. Experimental study of interaction of carbonic fluid with cumulus minerals of ultrabasic intrusions at 950°C and 200 MPa // Petrology. 2021b. V. 29. P. 371–385. https://doi.org/10.1134/S0869591121040068
  48. Simakin A.G., Devyatova V.N., Shiryaev A.A. Theoretical and experimental modeling of local scale CO2 flushing of hydrous rhyolitic magma // Russian J. Earth Sci. 2023. V. 23. ES6007, EDN: CTVIQU, https://doi.org/10.2205/2023es000871
  49. Simakin A.G., Shaposhnikova O.Yu., Isaenko S.I. et al. Raman spectroscopic data of the quenching phases of a Pt solution in a low water reduced carbonic fluid at P = 200 МPа and T = 950–1000°C // Petrology. 2024а. V. 32. No 5. P. 688–699.
  50. Simakin A.G., Shaposhnikova O.Y., Devyatova V.N. et al. Estimation of chlorine fugacity in low-Н2О fluid of the C-O-(H)-NaCl system in the cumulus of ultramafic–mafic intrusions // Dokl. Earth Sci. 2024b. V. 515. P. 423–429. https://doi.org/10.1134/S1028334X23603292
  51. Sullivan N.A., Zajacz Z., Brenan J.M. et al. The solubility of gold and palladium in magmatic brines: Implications for PGE enrichment in mafic-ultramafic and porphyry environments // Geochim. Cosmochim. Acta. 2022a. V. 316. P. 230–252. https://doi.org/10.1016/j.gca.2021.09.010
  52. Sullivan N.A., Zajacz Z., Brenan J.M., Tsay A. The solubility of platinum in magmatic brines: Insights into the mobility of PGE in ore-forming environments // Geochim. Cosmochim. Acta. 2022b. V. 316. P. 253–272. https://doi.org/10.1016/j.gca.2021.09.014
  53. White S.M., Crisp J.A., Spera F.J. Long-term volumetric eruption rates and magma budgets // Geochemistry, Geophysics, Geosystems. 2006. V. 7. Q03010. https://doi.org/10.1029/2005GC001002
  54. Zelenski M., Kamenetsky V.S., Mavrogenes J.A. et al. Platinum-group elements and gold in sulfide melts from modern arc basalt (Tolbachik volcano, Kamchatka) // Lithos. 2017. V. 290–291. P. 172–188.
  55. Zelenski M., Kamenetsky V.S., Mavrogenes J.A. et al. Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and compositions of sulfide melts // Chemical Geol. 2018. V. 478. P. 102–111. https://doi.org/10.1016/j.chemgeo.2017.09.013.
  56. Zelenski M., Kamenetsky V.S., Nekrylov N., Kontonikas-Charos A. High sulfur in primitive arc magmas, its origin and implications // Minerals. 2021. V. 12. No 1. P. 37. https://doi.org/10.3390/min12010037
  57. Zhong S.-S., Zhao Y.-Y.S., Lin H. et al. High-temperature oxidation of magnesium- and iron-rich olivine under a CO2 atmosphere: Implications for Venus // Remote Sens. 2023. V. 15. 1959. https://doi.org/10.3390/rs15081959

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the structure of the earth's crust beneath the KGV based on geophysical data: Vp/Vs ratio according to (volcanoes: ZIM – Zimina, BEZ – Bezymyanny, KAM – Kamen, KLU – Klyuchevskoy, Koulakov et al., 2013), where the centers of anomalously low and high values ​​are marked with ovals; the red dotted line limits the zone of coseismic cracks and faults according to (Kiryukhin et al., 2020); yellow rectangles limit zones with increased melt content (dotted line) and the zone of presumably mafic cumulate with increased fluid content located above it (dashed line). The upper inset shows seismic activity in 1999–2010 depending on depth and time; non-intersecting upper and lower active zones correspond to zones of anomalously low and high Vp/Vs values. The lower inset shows the petrological interpretation: an upper zone of predominantly cumulates with fluid and a lower zone with partial melt and unsolidified force-like bodies are distinguished, with subvertical dikes of repeated emplacements in the center.

Download (62KB)
3. Fig. 2. Platinum and gold contents in Tolbachik volcano lavas according to (Kutyrev et al., 2021), a group of background contents and two anomalous groups of high Pt and Au contents are distinguished.

Download (10KB)
4. Fig. 3. Dependence of BM solubility in various fluids (the fluid composition is indicated in the legend to the figure) on oxygen fugacity. For Pt, a minimum solubility is observed at oxygen fugacity close to QFM.

Download (17KB)
5. Fig. 4. Transition of valence forms of sulfur during oxidation of fluid and melt: (a) proportion of oxidized form, blue line according to experimental data in melt (Jugo et al., 2010), purple line calculated using formulas (4, 7) for parameters of Tolbachik volcano magma, brown and green lines in fluid; (b) calculated proportions of different forms of sulfur in fluid under conditions specified in the legend.

Download (39KB)
6. Fig. 5. Reduction of magmatic melt by reduced fluid: (a) calculated oxygen fugacity, (b) mass of sulfide phase depending on the amount of interacting fluid.

Download (46KB)
7. Fig. 6. Calculated average sulfur charge depending on oxygen fugacity in melt and fluid at pressures of 1 and 500 MPa. Horizontal dotted lines correspond to individual valence forms of sulfur. At initial fO2 > NNO+0.6, the melt oxidizes during degassing, both at 500 and 50 MPa, since sulfur is, on average, more oxidized in the melt than in the fluid. At fO2 ≤ NNO+0.14, the melt is reduced, and at intermediate fO2 values, it is first oxidized and then reduced.

Download (27KB)
8. Fig. 7. Calculated dependencies characterizing the effect of SO2 dissolution in basaltic melt: (a) evolution of the redox state, (b) mass of the sulfide phase depending on the mass of sulfur dissolved in the form of SO2.

Download (35KB)
9. Fig. 8. Compositions of sulfide droplets according to (Zelenski et al., 2018): (a) Pt, Pd, Au contents (wt. %), red dots – the ratio in the experimental fluid of the CO-CO2-Cl-(H2O) composition according to our data, the point of the average BM content in the Tolbachik volcano lava is plotted for comparison; (b) macrocomponents. Filled squares correspond to the extreme oxidized (orange) and reduced (blue) fluid compositions.

Download (32KB)
10. Fig. 9. Histograms of oxygen fugacity estimated from the partitioning of nickel between the host olivine and sulfide inclusions (Zelenski et al., 2017): (a) sulfides with low copper content, (b) with high copper content. Green rectangle: calculated conditions of sulfide formation during the reaction with reduced fluid, blue – with oxidized fluid. Arrows correspond to the uncertainty of the fO2 estimate. Anomalously oxidized sulfides (NNO = 2÷2.5) in histogram 9b can be stabilized by copper brought by the fluid.

Download (43KB)
11. Fig. 10. BM ratio in magmas of Tolbachik volcano (Kutyrev et al., 2021). The extreme compositions enriched in gold and platinum, as well as the composition of the lavas of the 1941 eruption are marked.

Download (16KB)

Copyright (c) 2025 Russian academy of sciences