Tectonostratigraphy of the Neoproterozoic in the Northern Kiselikha Terrane (Yenisei Ridge), A Part of the Active Siberian Margin

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The Precambrian continental block in the northwestern part of the Yenisei Ridge is called the Kiselikha terrane. It is separated from the main (cratonic) part of the ridge by the Isakovka ophiolite belt. The tectonic nature of this block is debatable due to incomplete and contradictory information about rocks that make it up, their age and geodynamic setting. The paper presents new data on the geology of northern segment of the terrane observed on the Yenisei River coast between the Porozhnaya and Osinovka granite massifs. Three stratigraphic units have been identified. (1) The Kiselikha Formation comprises almost the entire studied area. It is represented by foliated retrograde metamorphic rocks, mostly with an unobvious protolith. Zircons from seven samples revealed a similar detrital age distribution with a predominance of Neoproterozoic dates in the range of 1000–800 Ma along with Archean and Paleoproterozoic clusters. The previously assumed products of synchronous acidic volcanism are absent. (2) The Ust-Kutukas Formation, composed of pillow basalts similar to the stratotype, is exposed in the north of the area. (3) The Ust-Porozhnaya unit (identified in this work) was studied in two local outcrops. It is composed of metasedimentary rocks with clastic material eroded from 790–700 Ma granitoids. Taking into account previously published results, we assume that in the first half of Neoproterozoic the Kiselikha terrane was a part of the active margin of the Siberian paleocontinent. The terrane began to separate in the mid-Neoproterozoic due to back-arc continental rifting, which later led to opening of the Isakovka oceanic basin. The synrift sedimentary material of the Kiselikha Formation was washed out from the pre-Neoproterozoic gneisses, intruded by the early Neoproterozoic granites. Rifting was accompanied by intraplate basaltic magmatism, which was replaced by the pillow-basalts of the Ust-Kutukas Formation. Serpentinite bodies, widespread in this part of the terrane, are not associated with crustal oceanic rocks and may have been exhumed during hyperextension of the continental crust. Subduction under the outer edge of the Kiselikha block continued in the second half of the Neoproterozoic (790–620 Ma). At the beginning of the Vendian, the Isakovka oceanic basin was squashed up between the Siberian craton and the Kiselikha terrane, which again became a part of the parent continent. The rocks of the Kiselikha and Ust-Kutukas formations, together with serpentinite bodies, were thrust onto the terrane from the east.

Full Text

Restricted Access

About the authors

A. B. Kuzmichev

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: nsi.kuzmich@yandex.ru
Russian Federation, Moscow

M. K. Danukalova

Geological Institute, Russian Academy of Sciences

Email: nsi.kuzmich@yandex.ru
Russian Federation, Moscow

E. F. Babitsky

Geological Institute, Russian Academy of Sciences

Email: nsi.kuzmich@yandex.ru
Russian Federation, Moscow

N. B. Bryansky

Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences

Email: nsi.kuzmich@yandex.ru
Russian Federation, Irkutsk

A. S. Dubensky

Geological Institute, Russian Academy of Sciences

Email: nsi.kuzmich@yandex.ru
Russian Federation, Moscow

V. B. Khubanov

Dobretsov Geological Institute, Siberian Branch, Russian Academy of Sciences

Email: nsi.kuzmich@yandex.ru
Russian Federation, Ulan-Ude

References

  1. Верниковская А.Е., Верниковский В.А., Матушкин Н.Ю., Кадильников П.И., Вингейт М.Т.Д., Богданов Е.А., Травин А.В. А-граниты криогения Енисейского кряжа – индикаторы тектонической перестройки в юго-западном обрамлении Сибирского кратона // Геология и геофизика. 2023. Т. 64. № 6. С. 783–807. https://doi.org/10.15372/GiG2022142
  2. Верниковский В.А., Верниковская А.Е., Черных А.И., Сальникова Е.Б., Котов А.Б., Ковач В.П., Яковлева С.З., Федосеенко А.М. Порожнинские гранитоиды Приенисейского офиолитового пояса – индикаторы неопротерозойских событий на Енисейском кряже // Докл. АН. 2001. Т. 381. № 6. С. 806–810.
  3. Верниковский В.А., Метелкин Д.В., Верниковская А.Е., Матушкин Н.Ю., Казанский А.Ю., Кадильников П.И., Романова И.В., Вингейт М.Т.Д., Ларионов А.Н., Родионов Н.В. Неопротерозойская тектоническая структура Енисейского кряжа и формирование западной окраины Сибирского кратона на основе новых геологических, палеомагнитных и геохронологических данных // Геология и геофизика. 2016. Т. 57. № 1. С. 63–90. https://doi.org/10.15372/GiG20160104
  4. Государственная геологическая карта Российской Федерации масштаба 1 : 1 000 000 (третье поколение). Лист P-46. Объяснительная записка. СПб.: ВСЕГЕИ, 2010. 470 с.
  5. Данукалова М.К., Кузьмичев А.Б., Бабицкий Е.Ф., Дубенский А.С. Поиски террейна, столкнувшегося с Енисейской окраиной Сибирского палеоконтинента в конце неопротерозоя. 2. “Архейский блок” на северо-западе Исаковского домена Енисейского кряжа // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Материалы научной конференции. Вып. 20. Иркутск: ИЗК СО РАН, 2022. С. 63–65.
  6. Качевский Л.К., Качевская Г.И., Грабовская Ж.М. Геологическая карта Енисейского кряжа. Масштаб 1 : 500 000. Красноярск: Красноярскгеолсъемка, 1998.
  7. Ковригина Е.К. (отв. ред.). Государственная геологическая карта СССР. Масштаб 1 : 1 000 000 (новая серия). Лист Р-46, 47 – Байкит. Объяснительная записка. Л.: Ленингр. карт. фабрика объед. “Аэрогеология”, 1981. 199 с.
  8. Ковригина Е.К., Ковригин Ф.П. Стратиграфия докембрия западного склона Енисейского кряжа в бассейне рек Верхней и Нижней Сурних, Столбовой и Исаковки // Информ. сб. ВСЕГЕИ. 1960. № 40. С. 3–15.
  9. Козлов П.С., Лиханов И.И., Иванов К.С., Ножкин А.Д., Зиновьев C.В. Новые данные о возрасте неопротерозойских вулканитов Исаковского террейна Саяно-Енисейского аккреционного пояса (U–Pb, по циркону) // Докл. АН. 2019. Т. 488. № 5. С. 521–525.
  10. Колодяжный С.Ю., Кузнецов Н.Б., Романюк Т.В., Страшко А.В., Шалаева Е.А., Новикова А.С., Дубенский А.С., Ерофеева К.Г., Шешуков В.С. Природа Пучеж-Катункской импактной структуры (центральная часть Восточно-Европейской платформы): результаты изучения U–Th–Pb изотопной системы зерен детритового циркона из эксплозивных брекчий // Геотектоника. 2023. № 5. С. 70–95.
  11. Кузьмичев А.Б. Тектоника Исаковского синклинория Енисейского кряжа. Автореф. дисс. … канд. геол.-мин. наук. М.: ГИН РАН, 1987. 19 с.
  12. Кузьмичев А.Б., Падерин И.П., Антонов А.В. Позднерифейский Борисихинский офиолитовый массив (Енисейский кряж): U–Pb возраст и обстановка формирования // Геология и геофизика. 2008. Т. 49. № 12. С. 1175–1188.
  13. Кузьмичев А.Б., Данукалова М.К., Бабицкий Е.Ф., Сомсикова А.В., Хубанов В.Б., Брянский Н.В., Дубенский А.С. Поиски террейна, столкнувшегося с Енисейской окраиной Сибирского палеоконтинента в конце неопротерозоя. 1. Состав, возраст и геодинамическая позиция “островодужного” Порожнинского гранитного комплекса на СЗ окраине Енисейского кряжа // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса (от океана к континенту). Материалы научной конференции. Вып. 20. Иркутск: ИЗК СО РАН, 2022. С. 158–160.
  14. Кузьмичев А.Б., Стороженко А.А., Данукалова М.К., Хубанов В.Б., Дубенский А.С. Результаты датирования детритовых цирконов из докембрийских пород северо-западной части Енисейского кряжа: первые сведения о континентальном Киселихинском террейне // Стратиграфия. Геол. корреляция. 2023. Т. 31. № 6. С. 3–19.
  15. Лиханов И.И. Свидетельства гренвильских и вальгальских тектонических событий на западной окраине Сибирского кратона (Гаревский метаморфический комплекс, Енисейский кряж) // Петрология. 2023. Т. 31. № 1. С. 49–80.
  16. Лиханов И.И., Ножкин А.Д. Геохимия, обстановки формирования и возраст метавулканитов Исаковского террейна Енисейского кряжа – индикаторы ранних этапов эволюции Палеоазиатского океана // Геохимия. 2018. № 4. С. 308–320.
  17. Ножкин А.Д., Качевский Л.К., Дмитриева Н.В. Поздненеопротерозойская рифтогенная метариолит-базальтовая ассоциация Глушихинского прогиба (Енисейский кряж): петрогеохимический состав, возраст и условия образования // Геология и геофизика. 2013. Т. 54. № 1. С. 58–71.
  18. Поcтельников Е.C. Геоcинклинальное pазвитие Ениcейcкого кpяжа в позднем докембpии. М.: Наука, 1980. 70 c.
  19. Советов Ю.К., Ромашко А.И. Позднерифейский остаточный бассейн, связанный с коллизией террейна и Сибирского кратона (Енисейский кряж) // Геологическое развитие протерозойских перикратонных и палеоокеанических структур Северной Евразии. Материалы совещания. СПб.: Тема, 1999. С. 163–165.
  20. Стороженко А.А., Васильев Н.Ф. Карта золотоносности северной части Енисейского кряжа. Масштаб 1 : 200 000. Красноярскгеолсъемка, 2012.
  21. Стороженко А.А., Васильев Н.Ф., Пиманов А.В., Дмитриева Е.В., Дмитриев Г.А., Миллер В.Я. Государственная геологическая карта Российской Федерации масштаба 1 : 200 000. Серия Енисейская. Лист Р-46-XXV (р. Вороговка). Объяснительная записка. М.: Московский филиал ВСЕГЕИ, 2019. 188 с.
  22. Стратиграфический кодекс России. Издание третье, исправленное и дополненное. СПб.: Издательство ВСЕГЕИ, 2019. 96 с.
  23. Файбусович Я.Э., Варганов А.С., Воронин А.С. и др. Государственная геологическая карта Российской Федерации масштаба 1 : 1 000 000. Третье поколение. Лист P-45. Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2020. 222 с.
  24. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chem. Geol. 2004. V. 205. Iss. 1–2. P. 115–140.
  25. Kuzmichev A.B., Danukalova M.K. The Reference Garevka Granite (Yenisei Ridge, western margin of the Siberian Craton): the final attempt to verify Paleoproterozoic Pb/U isotopic age by M.I. Volobuev // Geodynamics & Tectonophysics. 2024. V. 15 (2). 0746. https://doi.org/10.5800/GT-2024-15-2-0746
  26. Kuzmichev A.B., Sklyarov E.V. The Precambrian of Transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogen, or reworked margin of the Siberian craton? // J. Asian Earth Sci. 2016. V. 115. P. 419–441.
  27. Ludwig K.R. Isoplot 3.00. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Spec. Publ. 2003. № 4.
  28. Nozhkin A.D., Turkina O.M., Likhanov I.I., Ronkin Yu.L. Early Neoproterozoic granitoids in the Ryazanovsky Massif of the Yenisei Ridge as indicators of the Grenville Orogeny at the western margin of the Siberian Craton // Geodynam. Tectonophys. 2024. V. 15 (2). 0745. https://doi.org/10.5800/GT-2024-15-2-0745
  29. Paton C., Woodhead J.D., Hellstrom J.C., Hergt J.M., Greig A., Maas R. Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction // Geochem. Geophys. Geosyst. 2010. V. 11. Q0AA06. https://doi.org/10.1029/2009GC002618
  30. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J. Iolite: freeware for the visualisation and processing of mass spectrometric data // J. Anal. At. Spectrom. 2011. V. 26 (12). P. 2508–2518.
  31. Petrus J.A., Kamber B.S. VizualAge: a novel approach to laser ablation ICP-MS U–Pb geochronology data reduction // Geostand. Geoanal. Res. 2012. V. 36 (3). P. 247–270.
  32. Priyatkina N., Khudoley A.K., Collins W.J., Kuznetsov N.B., Huang, H.-Q. Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: characterizing buried crust of the basement // Precambrian Res. 2016. V. 285. P. 21–38.
  33. Rud’ko S., Kuznetsov N., Shatsillo A., Rud’ko D., Malyshev S., Dubenskiy A., Sheshukov V., Kanygina N., Romanyuk T. Sturtian Glaciation in Siberia: evidence of glacial origin and U–Pb dating of the diamictites of the Chivida Formation in the north of the Yenisei Ridge // Precambrian Res. 2020. V. 345. 105778. https://doi.org/10.1016/j.precamres.2020.105778
  34. Slama J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood S.A.M., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249 (1–2). P. 1–35.
  35. Theunissen T., Huismans R.S. Mantle exhumation at magma-poor rifted margins controlled by frictional shear zones // Nature Communications. 2022. V. 13. 1634.
  36. Vermeesch P. On the visualisation of detrital age distribution // Chem. Geol. 2012. V. 312–313. P. 190–194.
  37. Vernikovsky V.A., Vernikovskaya A.E., Kotov A.B., Sal’nikova E.B., Kovach V.P. Neoproterozoic accretionary and collisional events on the western margin of the Siberian craton: new geological and geochronological evidence from the Yenisey Ridge // Tectonophysics. 2003. V. 375. P. 147–168
  38. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis // Geostandard Newsletter. 1995. V. 19. P. 1–23.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isakov domain in the structure of the Yenisei ridge. In its western part, the position of the Kiselikhinsky terrane is shown, the geology of which is discussed in the article. The rectangle represents the contour of Fig. 2. Inset: the position of the Yenisei Ridge in the west of the Siberian Platform.

Download (1MB)
3. Fig. 2. Generalized block diagram of the section discussed in the article. Serpentinite bodies are shown according to the data of a 1:50,000 scale group geological survey (generalized). The soles of the thrust plates were traced inside the Kiselikhinsky formation presumably in accordance with the general structure. The elements of the occurrence of shale, which usually (but not always) coincides with the stratification (banding), have been removed.

Download (767KB)
4. 3. Schematic stratigraphic column of the Kiselikhinsky terrane according to Storozhenko et al. (2019). The red lines indicate tectonic boundaries.

Download (475KB)
5. Рис. 4. Маршрутная схема береговых обнажений вдоль правого берега р. Енисей между Порожнинским и Осиновским гранитными массивами (генерализовано). (а) – южный сегмент, (б) – северный сегмент (см. положение этих сегментов на рис. 2). Звездочками отмечены места отбора датированных образцов детритового циркона, подписаны их номера.

Download (519KB)
6. Fig. 5. Field photographs of rocks of the Kiselikhinsky formation. (a) – banded metabasites with leukocratic interlayers. A flat root outlet in the beach, partially covered with pebbles, 255 m north of T. 020 (Fig. 4a). Such exits are not permanent, as they can be covered with pebbles during a flood or, conversely, exposed from under the pebbles. (b) is a diafluorinated garnet amphibolite 275 m north of T. 020. In this case, garnet porphyroblasts (dark spots) are completely replaced by chlorite. (c) – the base of diafluorinated amphibolite in green shales in volume 026. (d) – layered quartz-albite-chlorite-muscovite shales of variable composition in volume 039 (Fig. 4b). It can be seen that the shale does not coincide with the layering. (e) – gravelly feldspar-quartz metafesanstone with a carbonate concretion in volume 035. (f) – outcrop 032, hollowly inclined sandstone slabs reserve the beach (in the center of the photo is a hammer for scale). In the background, you can see the nature of the outcrop higher up the river.

Download (1MB)
7. Fig. 6. Micrographs of the grindings and scans of the cuts of the samples. (a) – garnet-chlorite-muscovite shale 024/4-21. Garnet (high relief) is partially chloritized. Nicoli are parallel. (b) – metagabbro(?) 037/4-21. Plagioclase is replaced by aggregated acid plagioclase and epidote, clinopyroxen– chlorite and actinolite. Sphen forms large shapeless secretions (bottom left) and chains of small crystals (in the left third). Nicoli are parallel. (c) Quartz-chlorite-muscovite-albite shale 038/2-21. Large euhedral epidote crystals are visible, some of them have sphenes in the core. Nicoli are parallel. (d) – the same, the knees are crossed. (e) – garnet-chlorite-muscovite-quartz schist 024/5-21 with lenticular interlayers of quartz-plagioclase composition resembling secretions of migmatite leukosoma. In the upper right part of the separation of the finely aggregated epidote. The knees are crossed. (e) – epidote-chlorite-actinolite-albite shale 026/2-21. Newly formed scalloped porphyroblasts of albite are visible against the background of an actinolite-chlorite aggregate. Outside of the micrography, quartz (mainly in the form of layered veins), sometimes in combination with plagioclase, carbonate, and compact chlorite separations in place of the original garnet porphyroblasts are also present in the shelf. Nicoli are parallel. (g) – cutting of a sample of gravelly feldspar-quartz sandstone 052/5-21, similar to cataclysmic granite, selected for the extraction of zircon. Large crystals of feldspar are transformed into a fine–grained aggregate of albite and quartz (?). In the interstitials, chlorite, epidote, muscovite, and sphen. (h) - saw sample 006/2-21. Light – quartz, plagioclase and calcite, dark – muscovite-chlorite aggregate. Mineral abbreviations: Ab – albite, Act – actinolite, Cal – calcite, Chl – chlorite, Ep – epidote, Grt – garnet, Ms – muscovite, Pl – plagioclase, Qz – quartz, Ttn – titanite (sphen).

Download (1MB)
8. 7. Field photographs of rocks of the Kiselikhinsky and Ustkutukassky formations and the Ustporozhninsky strata. (a) – gneiss–like gravellitic metapeschanik of the Kiselikhinsky formation in volume 032. (b) - complex folds in silicate marble, 280 m south of the mouth of the Kiselikha River. (c) – rocky outcrops of the Ustkutukassk formation basalts on the island. Uncle. (d) – Ustkutukassky retinue. Small pillows and injections of basalt immersed in hyaloclastite. The rectangle shows the contour of Fig. 7d. (e) is a close–up fragment of photo 7g. The white specks are composed of albite porphyroblasts. (e) is a view of the “underwater” outcrop 006 (Fig. 2). The cliff in the background is composed of serpentinites (t. 010).

Download (1MB)
9. Рис. 8. Схема расположения обнажений устькутукасской свиты (зеленая заливка с V крапом) к югу от Осиновского гранитного массива (красный цвет) (рис. 2).

Download (253KB)
10. 9. Histograms and graphs of age distribution density (KDE) for the analyzed samples of the Kiselikhinsky formation.

Download (387KB)
11. 10. Combined data on the age distribution of detrital zircon in all seven analyzed samples of the Kiselikhinsky formation. In the inset: the age of the cluster of the 11 youngest analyses, corresponding to the maximum age of sedimentation.

Download (299KB)
12. 11. Cathodoluminescent images of detrital zircon grains from different age populations of the Kiselikhinsky formation. The positions of the ablative craters are shown, and the age (million years) and the analysis number (in parentheses) are indicated next to it. Photographs of crystals of two representative samples were selected, for which large grains (> 100 microns) were analyzed, since the quality of CL images is higher for them: 021/1-21 (white color indication) and 032/3-21 (yellow color). The images are arranged in six rows corresponding to the main age groups (Fig. 10). Rows (from bottom to top) and age ranges (in million years): lower row – Archaean and Early Paleoproterozoic, second row from bottom – 2000-1900; third row from bottom – 1800-1750; fourth row – 980-940; The fifth row from the bottom is 920-870; the top row is 820-790.

Download (714KB)
13. Fig. 12. Histogram and KDE graph of the age of detrital zircon grains of sample 006/2-21. In the Pb/U inset, the isotope diagram for the eight youngest zircons, the concordant age of this cluster (708 ± 5 million years) is accepted as the lower age limit of the Ustporozhninsk strata.

Download (360KB)
14. 13. Cathodoluminescent images of zircon crystals from the Late Neoproterozoic (population 790-700 Ma) of sample 006/2.

Download (287KB)
15. 14. Tectonostratigraphic column, which summarizes the known data on Devonian strata of the Kiselikhinsky terrane. The numbers 1-5 indicate rock complexes. Generalized generally accepted lithological patterns are applied.

Download (495KB)
16. Supplement
Download (414KB)

Copyright (c) 2025 Russian academy of sciences