Flood on the coast of the Kamchatka Peninsula on December 14–15, 2023

Cover Page

Cite item

Full Text

Abstract

The causes, conditions and features of the formation of marine flood on the coast of Kamchatka in December 2023, which arose as a result of a deep cyclone entering the waters of the southwestern part of the Bering Sea, are analyzed. Information on the flooding of ten coastal settlements is provided. To study the dynamics of the process, numerical hydrodynamic modeling of spatio-temporal changes in the characteristics of wind waves (WAVEWATCH III model), anemobaric surge (two-dimensional models of the combined dynamics of water and ice), methods for calculating the tide and run-up (Mase method) were used. It was found that the flooding of settlements occurred as a result of the proximity of the formation in time of higher high water, maximum values of the anemobaric surge and run-up. At the same time, tidal height was close to highest astronomical tide. It is shown that all the factors under consideration make a significant contribution to the total rise in sea level at coastal points, which leads to the need to take them into account in the methods for forecasting marine floods on the coast of Kamchatka. In the coming years, the number and intensity of floods in the study area may increase due to ongoing climate change and coastal subsidence as a result of modern vertical movements of the earth’s crust.

About the authors

Y. V. Lyubitskiy

Far Eastern Regional Hydrometeorological Research Institute

Email: yuvadlub@gmail.com
Vladivostok, Russia

A. N. Vrazhkin

Far Eastern Regional Hydrometeorological Research Institute

Vladivostok, Russia

References

  1. Vrazhkin A.N. Rezhim, diagnoz i prognoz vetrovogo volnenija v okeanah i morjah Adaptacija modelej WAVEWATCH i SWAN k akvatorijam dal’nevostochnyh morej. Rezhim, diagnoz i prognoz vetrovogo volnenija v okeanah i morjah / Pod red. E.S. Nesterova. Moskva, Obninsk: Social’nye nauki, 2013. S. 129.
  2. Gidrometeorologija i gidrohimija morej. Tom X. Beringovo more. Vyp. 1. Gidrometeorologicheskie uslovija / Otv. red. F.S. Terzieva. Sunkt-Peterburg: Gidrometeoizdat, 1999. 300 s.
  3. Duvanin A.I. Volnovye dvizhenija v more. Leningrad: Gidrometeoizdat, 1968. 223 s.
  4. Zajcev A.I., Pelinovskij E.N., Dogan D., Jalchenir B., Jalchenir A., Kurkin A.A., Moskvitin A.A. Chislennoe modelirovanie shtormovogo nagona 15 nojabrja 2019 goda na juge ostrova Sahalin // Morskoj gidrofizicheskij zhurnal. 2020. T. 36. № 4. S. 396–406.
  5. Ivanova A.A., Arhipkin V.S., Myslenkov S.A., Shevchenko G.V. Modelirovanie shtormovyh nagonov v pribrezhnoj zone ostrova Sahalin // Vest. Mosk. Univ. Ser. 5 Geogr. 2015. № 3. S. 41–49.
  6. Korablina A.D., Kondrin A.T., Arhipkin V.S. Modelirovanie nagonov v Belom i Barencevom morjah za period 1979‒2015 gg. // Trudy Gidrometcentra Rossii. 2017. № 364. S. 144–158.
  7. Kulikov E.A., Medvedev I.P. Statistika jekstremal’nyh sgonno-nagonnyh javlenij v Baltijskom more // Okeanologija. 2017. T. 57. № 6. S. 858–870.
  8. Leont’ev I.O. Pribrezhnaya dinamika: volny, techeniya, potoki nanosov. Moskva: GEOS, 2001. 272 s.
  9. Lyubitskiy Yu.V., Shvetsov A.E. Shtormovye nagony na ust’evom vzmor’e Amura // Vodnye resursy. 1994. T. 21, № 6. S. 609–614.
  10. Lyubitskiy Yu.V., Shevchenko G.V., Elisov V.V. Shtormovye nagony // Mirovoj okean. Tom I. Geologija i tektonika okeana. Katastroficheskie javlenija v okeane / Pod red L.I. Lobkovskogo. Moskva: Nauchnyj mir, 2013. S. 559–575.
  11. Lyubitskiy Yu.V. Metod kratkosrochnogo prognoza urovnja morja na poberezh’e i akvatorii Ohotskogo i Japonskogo morej i na vostochnom poberezh’e poluostrova Kamchatka // Trudy DVNIGMI. 2017. № 155. S. 32–68.
  12. Lyubitskiy Yu.V., Romanskiy S.O. Metod i tehnologija kratkosrochnogo prognoza izmenenij urovnja morja v jugo-zapadnoj chasti Beringova morja // Gidrometeorologicheskie issledovaniya i prognozy. 2022. № 1 (383). S. 71–88.
  13. Medvedev I.P., Kulikov E.A. Jekstremal’nye shtormovye nagony v Finskom zalive: chastotno-spektral’nye svojstva i vlijanie nizkochastotnyh kolebanij urovnja morja // Okeanologija. 2021. T. 61, № 4. S. 528–538.
  14. Nesterov E.S., Popov S.K., Lobov A.L. Statistika i modelirovanie shtormovyh nagonov v Severnom Kaspii // Meteorologija i gidrologija. 2018. № 10. S. 53–59.
  15. Pavlova A.V., Arhipkin V.S., Myslenkov S.A. Vnutri- i mezhgodovaja izmenchivost’ sgonno-nagonnyh kolebanij urovnja morja v Severnom Kaspii // Gidrometeorologicheskie issledovaniya i prognozy. 2020. № 3 (377). S. 42–57.
  16. Pomeranec K.S. Tri veka peterburgskih navodnenij. Sankt-Peterburg: Iskusstvo-Sankt-Peterburg, 2005. 214 s.
  17. Popov S.K., Lobov A.L. Gidrodinamicheskoe modelirovanie navodnenij v Sankt-Peterburge s uchetom rabotajushhej damby // Meteorologija i gidrologija. 2017. № 4. S. 80–89.
  18. Popov S.K., Lobov A.L. Diagnoz i prognoz navodneniya v Taganroge po operativnoj gidrodinamicheskoj modeli // Trudy Gidrometcentra Rossii. 2016. № 362. S. 92–108.
  19. Rabinovich A.B. Dlinnye gravitacionnye volny v okeane: zahvat, rezonans, izluchenie. Sankt-Peterburg: Gidrometeoizdat, 1968. 325 s.
  20. Shevchenko G.V. Statisticheskie harakteristiki shtormovyh nagonov v juzhnoj chasti o. Sahalin // Izv. RGO. 1997. T. 129, № 3. S. 94–107.
  21. Almar R., Ranasinghe R., Bergsma E. W. J., Diaz H., Melet A., Papa F., Vousdoukas M., Athanasiou P., Dada O., Almeida L. P., Kestenare E. A global analysis of extreme coastal water levels with implications for potential coastal overtopping // Nature Communications. 2021. 12, 3775. P. 1–10.
  22. Atkinson A., Power H., Moura T., Hammond T., Callaghan D., Baldock T. Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast // Coastal Engineering. 2017. V. 119. P. 15–31.
  23. Coastal Engineering Manual. Part II: Coastal Hydrodynamics (EM 1110-2-1100). Washington: Books Express Publishing. 2012. 624 р.
  24. Foreman M.G.G. Manual for tidal heights analysis and prediction. Pacific Marine Science Report 77-10. Institute of Ocean Sciences, Patricia Bay, Victoria, B.C. 2004. 58 p.
  25. Kim C.-K., Lee J.T. Numerical simulations of storm surge disaster due to typhoon Maemi in Korea // Publs. Inst. Geophys. Pol. Acad. Sc. 2008. E-10 (406). P. 63–69.
  26. Knabb R.D., Rhome J.R., Brown D.P. Hurricane Katrina 23–30 August 2005. Tropical Cyclone Report. National Hurricane Center. Miami: 2005. 43 p.
  27. Kowalik Z., Luick J. The oceanography of tides. Fairbanks: 2013. 157 p.
  28. Longuet-Higgins M.S. On wave set-up in shoaling water with a rough sea bed // J. Fluid Mech. 2005. V. 527. P. 217–234.
  29. Mellor G.L. Wave radiation stress // Ocean Dynamics. 2011. V. 61. P. 563–568.
  30. Newell C., Mullarkey T., Clyne M. Radiation stress due to ocean waves and the resulting currents and set-up/set-down // Ocean Dynamics. 2005. V. 55. P. 499–514.
  31. Parker B.B. Tidal Analysis and Prediction. NOAA Special Publication NOS CO-OPS 3. Silver Spring, Maryland: 2007. 378 p.
  32. Stockdon H.F., Thompson D.M., Plant N.G., Long J.W. Evaluation of wave runup predictions from numerical and parametric models // Coastal Engineering. 2014. 92, P. 1–11.
  33. Shand R.D., Shand T.D., McComb P.J., Johnson D.L. Evalution of empirical predictors of extreme run-up using field data // Proc. 20th Austral. Coast. and Ocean Eng. Conf. 28-30 Sept. 2011. Perth. Australia. 2011. Р. 669–675.
  34. User manual and system documentation of WAVEWATCH III version 6.07 Technical Note 333 /NOAA/NWS/NCEP/MMAB. 2019. 466 p.
  35. Zong Y., Tooley M.J. A historical record of coastal floods in Britain: frequencies and associated storm tracks // Nat. Hazards. 2003. V. 29. P. 13–36.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences