Diffuse reflectance spectroscopy for assessing various soil properties: a review

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Hyperspectral imaging has proven to be a powerful tool in environmental applications. This review article focuses on implementation of noncommercial hyperspectral data in soil property predictions suitable for engineering geological applications. Prior attention has been given to spectroscopic processing and further data analysis in case studies of mineral composition, grain size, soil moisture and soil organic carbon. We considered PRISMA, EnMAP and DESIS perceptively to be the most suitable sensors for soil mapping according to the specifics of Russian environmental research, described modern pre-processing techniques and use-cases for hyperspectral imagery in soil studies. Pros and contras of spectroscopic approaches are discussed from engineering geological point of view. We concluded that the main problem preventing the local further development of spectroscopy is lack of soil samples for Russian territory available in published spectroscopic libraries. Several points were raised regarding orthorectification and atmospheric corrections, i.e., the need for data of high resolution and requirement of processing improvement might be still a problem for soil applications. On the other side, large amount of data available for scientific use, high accuracy and spatial resolution of hyperspectral imagery stimulates us to find a solution of mentioned problems. This work tends to demonstrate advantages of spectroscopic approaches to direct spectral data interpretation and it is aimed at drawing more attention of researchers in engineering geology to spectroscopic approaches.

Full Text

Restricted Access

About the authors

D. S. Savchenko

Lomonosov Moscow State University; Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences

Author for correspondence.
Email: danilsavch@yandex.ru

Geological Faculty

Russian Federation, Leninskiye Gory 1, Moscow, 119991; Ulansky per. 13, bld. 2, Moscow, 101000

E. A. Voznesensky

Lomonosov Moscow State University; Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences

Email: eugene@geoenv.ru

Geological Faculty

Russian Federation, Leninskiye Gory 1, Moscow, 119991; Ulansky per. 13, bld. 2, Moscow, 101000

R. R. Timigaleeva

Lomonosov Moscow State University

Email: timirgaleevarr@my.msu.ru

Institute of Complex Systems Mathematical Research

Russian Federation, Leninskiye Gory 1, Moscow, 119991

A. V. Korotaev

Lomonosov Moscow State University; HSE University; Institute for African Studies, Russian Academy of Sciences

Email: akorotаyev@gmail.com

Faculty of Global Studies, Centre for Stability and Risk Analysis

Russian Federation, Leninskiye Gory 1, Moscow, 119991; Myasnitskaya ul. 20, Moscow, 101000; ul. Spiridonovka 30/1, Moscow, 123001

References

  1. Baborykin, M.Yu., Zhidilyaeva E.V., Pogosyan A.G. [Interpretation of aerospace materials to determine engineering geological conditions in the general algorithm of surveys at linear objects]. Inzhenernye izyskaniya, 2014, no. 9-10, pp. 13—21. (in Russian)
  2. Grubina, P.G., Savin, I.Yu. [Informative value of infrared survey data for detecting properties of arable soils]. Vestnik RUDN. Seriya: Agronomiya i zhivotnovodstvo, 2023, no. 2 (18), pp. 197—212. https://doi.org/10.22363/2312-797X-2023-18-2-197-212 (in Russian)
  3. Kornienko, S.G. [Informative value of ultra-high resolution satellite images for monitoring the moisture content of the tundra cover]. Aktual’nye problemy nefti i gaza, 2020, no. 2 (29), pp. 82—95. https://doi.org/10.29222/ipng.2078-5712.2020-29.art7 (in Russian)
  4. Krinov, E.L. [Spectral reflectance properties of natural objects]. Moscow, USSR Academy of Sci. Publ., 1947, 273 p. (in Russian)
  5. Kronberg, P. [Remote sensing of the Earth. Basic principles and methods sensing in geology]. Translation from German. Moscow, Mir Publ., 1988, 352 p. (in Russian)
  6. Nikiforova, N.N., Kalinicheva, S.V., Plotnikov, N.A. et al. [Soil moisture analysis using remote sensing and field work studies]. In: [Geography and regional studies in Yakutia and the neighboring territories of Siberia and the Far East]. Yakutsk, North East Federal Univ. Publ., 2022, pp. 103—106. (in Russian)
  7. Pronina, L.A., Gmyrya, A.A., Khoroshavina, A.V. [The use of LIDAR in engineering geodetic surveys for designing the reconstruction of highways]. Online scientific and methodical journal of Omsk GAU, 2019, no. 5, pp. 10—14. http://e-journal.omgau.ru/images/issues/2019/4/00772.pdf. (accessed 20.09.2024) (in Russian)
  8. Prudnikova, E.Yu., Savin, I.Yu., Vindeker, G.V. [Spectral reflectance of bare surface of arable soils as a basis for the detection of their properties using remote sensing data]. Proc. of the II Russian Sci. Conf. “Application of Earth remote sensing in agriculture”. St. Petersburg, AFI Publ., 2018, pp. 113—119. https://doi.org/10.25695/agrophysica.2018.2.18770 (in Russian)
  9. Raikunov, G.G., Shcherbakov, V. L., Turchenko, S. I., Brusnichkina, N.A. [Hyperspectral remote sensing in geological mapping].Moscow, FIZMATLIT Publ., 2014, 136 p. (in Russian)
  10. Savin, I.Yu. [Perspectives for soil mapping and monitoring based on interpolation of point data and remote sensing methods]. Vestnik Moskovskogo universiteta. Ser. 17. Pochvovedenie, 2022, no. 2, pp. 13—19. (in Russian)
  11. Savin, I.Y., Vindeker, G.V. [Some particularities of the soil surface optical properties usage to detect soil moisture]. Pochvovedenie, 2021, no. 7, pp. 806—814. (in Russian)
  12. Savin, I.Yu., Shishkin, M.A., Sharychev, D.V. [Peculiarities of spectral reflectance of fractions with sizes from 20 to 5000 microns in soil samples]. Byulleten’ Pochvennogo instituta im. V.V.Dokuchaeva, 2022, no. 112, pp. 24—47. https://doi.org/10.19047/0136-1694-2022-112-24-47 (in Russian)
  13. Tronin, A.A., Gornyi, V.I., Kritsuk, S.G., Latypov, I.Sh. [Spectral remote sensing for mineral exploration. A review]. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2011, vol. 8, no. 4. pp. 23—26. (in Russian)
  14. Prudnikova, E.Yu., Savin, I.Yu. [Study of the optical properties of an exposed soil surface]. Opticheskii zhurnal, 2016, vol. 83, no. 10, pp. 79—86. (in Russian)
  15. Abrams, M., Yamaguchi, Y., Crippen, R. ASTER Global DEM (GDEM) Ver. 3. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, vol. B4-2022 (XLIII-B4-2022), pp. 593—598.
  16. Alonso, K., Bachmann, M., Burch, K., Carmona, E. et al. Data products, quality and validation of the DLR Earth Sensing Imaging Spectrometer (DESIS), Sensors, 2019, vol. 19, no. 20: 4471. pp. 1—44. https://doi.org/10.3390/s19204471
  17. Alonso, K., Bachmann, M., Burch, K., Carmona, E. et al. Statistical classification for assessing PRISMA hyperspectral potential for agricultural land use. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, vol. 6, no. 2. pp. 615—625. https://doi.org/10.1109/JSTARS.2013.2255981
  18. Baumgardner, M.F., Silva, L.F., Biehl, L.L., Stoner, E.R. Reflectance properties of soils. Advances in agronomy, 1986, vol. 38, pp. 1—44. https://doi.org/10.1016/S0065-2113(08)60672-0
  19. Bayer, A. D., Bachmann, M., Rogge, D. et al. Combining field and imaging spectroscopy to map soil organic carbon in a semiarid environment, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, vol. 9, no. 9. pp. 3997—4010. https://doi.org/10.1109/JSTARS.2016.2585674
  20. Ben-Dor, E., Chabrillat, S., Demattê, J.A.M. et al. Using imaging spectroscopy to study soil properties. Remote Sensing of Environment. 2009, vol. 113, pp. 38—55. https://doi.org/10.1016/j.rse.2008.09.019
  21. Ben-Dor, E., Irons, J. R., Epema, G. F. Soil reflectance. Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 1999. vol. 3, no. 3, pp. 111—188.
  22. Bhargava, A., Sachdeva, A., Sharma, K. et al. Hyperspectral imaging and its applications: a review. Heliyon, 2024, vol. 10, no. 12, pp. 1—15. https://doi.org/10.1016/j.heliyon.2024.e33208
  23. Bowers, S. A., Hanks, R. J. Reflection of radiant energy from soils. Soil Science, 1965, vol. 100, no. 2, pp. 130—138.
  24. Castaldi, F., Palombo, A., Pascucci, S. et al. Reducing the influence of soil moisture on the estimation of clay from hyperspectral data: a case study using simulated PRISMA data. Remote Sensing, 2015, vol. 7, no. 11, pp. 15561—15582. https://doi.org/10.3390/rs71115561
  25. Castaldi, F., Palombo, A., Santini, F. et al. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, 2016, vol. 179, pp. 54—65. https://doi.org/10.1016/j.rse.2016.03.025
  26. Cierniewski, J., Kuśnierek, K. Influence of several size properties on soil surface reflectance. Quaestiones Geographicae, 2010, vol. 29, no. 1, pp. 13–25. https://doi.org/10.2478/v10117-010-0002-9
  27. Cocks, T., Jenssen, R., Stewart A. et al. The HyMap TM airborne hyperspectral sensor: the system, calibration and performance. Proc. of the 1st EARSeL workshop on imaging spectroscopy, EARSeL, Zurich, 1998, pp. 37—42.
  28. Demattê, J.A., Dott,o A.C., Paiva, A.F., Sato, M.V. et al. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, 2019, vol. 354, pp. 1—21. https://doi.org/10.1016/j.geoderma.2019.05.043
  29. Eismann, M. T. Hyperspectral remote sensing. Washington: SPIE, 2012. 748 p.
  30. Fabre, S., Briottet, X., Lesaignoux, A. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm Domain. Sensors, 2015. vol. 15, no. 2, pp. 3262—3281. https://doi.org/10.3390/s150203262
  31. Ge, W., Cheng, Q., Jing, L., Chen, Y. et al. Mineral mapping in the western Kunlun Mountains using Tiangong-1 hyperspectral imagery. IOP Conference Series: Earth and Environmental Science, 2016, vol. 34, no. 1, pp. 1—6.
  32. Gersman, R., Ben-Dor, E., Beyth, M. et al. Mapping of hydrothermally altered rocks by the EO-1 Hyperion sensor, Northern Danakil Depression, Eritrea. International Journal of Remote Sensing, 2008, vol. 29, no. 13, pp. 3911—3936. https://doi.org/10.1080/01431160701874587
  33. Gomez, C., Lagacherie, P. Mapping of primary soil properties using optical visible and near infrared (Vis-NIR) remote sensing. Land surface remote sensing in agriculture and forest, 2016, pp. 1—35. https://doi.org/10.1016/B978-1-78548-103-1.50001-7
  34. Gomez, C., Lagacherie, P., Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma, 2012, vol. 189, pp. 176—185. https://doi.org/10.1016/j.geoderma.2012.05.023
  35. Gomez, C., Viscarra Rossel, R. A., McBratney, A.B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: an Australian case study. Geoderma, 2008, vol. 146, no. 3—4, pp. 403—411. https://doi.org/10.1016/j.geoderma.2008.06.011
  36. Goswami, C., Singh, N. J., Handique, B. K. Hyperspectral spectroscopic study of soil properties — a review. International Journal of Plant & Soil Science, 2020, vol. 32, no. 7, pp. 14-25. https://doi.org/10.9734/ijpss/2020/v32i730301
  37. Guanter, L., Kaufmann, H., Segl, K., Foerster, S. et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sensing, 2015, vol. 7, no. 7, pp. 8830—8857. https://doi.org/10.3390/rs70708830
  38. Haubrock, S.N., Chabrillat, S., Lemmnitz, C., Kaufmann, H. Surface soil moisture quantification models from reflectance data under field conditions. International Journal of Remote Sensing, 2008, vol. 29, no. 1, pp. 3—29. https://doi.org/10.1080/01431160701294695
  39. Huang, J., Yuang, Y. Vertical accuracy assessment of the ASTER, SRTM, GLO-30, and ATLAS in a forested environment. Forests, 2024, vol. 15, no. 3: 426. pp. 1—19. https://doi.org/10.3390/f15030426
  40. Hubbard, B.E., Crowley, J.K. Mineral mapping on the Chilean-Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: data dimensionality issues and solutions. Remote Sensing of Environment, 2005, vol. 99, no. 1—2, pp. 173—186. https://doi.org/10.1016/j.rse.2005.04.027
  41. Janik, L.J., Merry, R.H., Skjemstad, J.O. Can mid infrared diffuse reflectance analysis replace soil extractions? Australian Journal of Experimental Agriculture, 1998, vol. 38, no. 7, pp. 681—696. https://doi.org/10.1071/EA97144
  42. Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E. et al. USGS Spectral Library Version 7 (no. 1035). Reston: US Geological Survey, 2017. 68 p. https://doi.org/10.3133/ds1035
  43. Ladoni, M., Bahrami, H.A., Alavipanah, S.K., Norouzi, A.A. Estimating soil organic carbon from soil reflectance: a review. Precision Agriculture, 2010, vol. 1, no. 11, pp. 82—99. https://doi.org/10.1007/s11119-009-9123-3
  44. Lehnert, K., Su Y., Langmuir, C. H., Sarbas, B., Nohl, U. A global geochemical database structure for rocks. Geochemistry, Geophysics, Geosystems, 2000, vol. 1, no. 1, pp. 1—14. https://doi.org/10.1029/1999GC000026
  45. Leverington, D.W. Discrimination of sedimentary lithologies using Hyperion and Landsat Thematic Mapper data: a case study at Melville Island, Canadian High Arctic. International Journal of Remote Sensing, 2010, vol. 31, no. 1, pp. 233—260. https://doi.org/10.1080/01431160902882637
  46. Liu, L., Ji M., Buchroithner, M. Transfer learning for soil spectroscopy based on convolutional neural networks and its application in soil clay content mapping using hyperspectral imagery. Sensors, 2018. vol. 18, no. 9: 3169, pp. 1—18. https://doi.org/10.3390/s18093169
  47. Lobell, D.B., Asner, G. Moisture effects on soil reflectance. Soil Science Society of America Journal, 2002, vol. 66, no. 3, pp. 722—727. https://doi.org/10.2136/sssaj2002.7220
  48. Lopinto, E., Ananasso, C. The Prisma hyperspectral mission. Proc. the 33rd EARSeL Symposium: Towards Horizon, 2020, vol. 12, pp. 135—146.
  49. Marghany, M. Remote sensing and image processing in mineralogy. Oxon: CRC Press, 2022. 300 p.
  50. Van der Meer, F.D., Van der Werff, H.M., Van Ruitenbeek, F.J. et al. Multi- and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 2012, vol. 14, no. 1, pp. 112—128. https://doi.org/10.1016/j.jag.2011.08.002
  51. Mielke, C., Boesche, N. K., Rogass, C. et al. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sensing, 2014, vol. 6, no.8, pp. 6790—6816. https://doi.org/10.3390/rs6086790
  52. Mielke, C., Rogass, C., Boesche, N., Segl, K., Altenberger, U. EnGeoMAP 2.0-automated hyperspectral mineral identification for the German EnMAP space mission. Remote Sensing, 2016, vol. 8, no. 2: 127, pp. 1—26. https://doi.org/10.3390/rs8020127
  53. Milewski, R., Chabrillat, S., Brell, M., Schleicher, A.M., Guanter, L. Assessment of the 1.75 μm absorption feature for gypsum estimation using laboratory, air- and spaceborne hyperspectral sensors. International Journal of Applied Earth Observation and Geoinformation, 2019, vol. 77, pp. 69—83. https://doi.org/10.1016/j.jag.2018.12.012
  54. Moreira, L. C.J., Teixeira, A. dos S., Galvão, L.S. Laboratory salinization of Brazilian alluvial soils and the spectral effects of gypsum. Remote Sensing, 2014, vol. 6, no. 4, pp. 2647—2663. https://doi.org/10.3390/rs6042647
  55. Okin, G.S., Painter, T.H. Effect of grain size on remotely sensed spectral reflectance of sandy desert surfaces. Remote Sensing of Environment, 2004, vol. 89, no. 3, pp. 272—280. https://doi.org/10.1016/j.rse.2003.10.008
  56. Perkins, R., Galloway, P., Miller, R., Graham, L. Teledyne’s MUSES mission on the ISS: enabling flexible and reconfigurable earth observation from space. International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth: IEEE, 2017, pp. 1177—1180. https://doi.org/10.1109/IGARSS.2017.8127167
  57. Qian, S.E. Hyperspectral satellites, evolution, and development history. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, vol. 14, pp. 7032—7056. https://doi.org/10.1109/JSTARS.2021.3090256
  58. Schad, P. World reference base for soil resources — its fourth edition and its history. Journal of Plant Nutrition and Soil Science, 2023, vol. 186, no. 2, pp. 151—163. https://doi.org/10.1002/jpln.202200417
  59. Shepherd, K. D., Walsh, M. G. Development of reflectance spectral libraries for characterization of soil properties. Soil Science Society of America Journal, 2002, vol. 66, no. 3, pp. 988—998. https://doi.org/10.2136/sssaj2002.9880
  60. Signoroni, A., Savardi, M., Baronio, A., Benini, S. Deep learning meets hyperspectral image analysis: a multidisciplinary review. Journal of Imaging, 2019, vol. 5, no. 5: 52, pp. 1—32. https://doi.org/10.3390/jimaging5050052
  61. Singh, A., Gaurav, K., Sonkar, G.K., Lee, C.C. Strategies to measure soil moisture using traditional methods, automated sensors, remote sensing, and machine learning techniques: review, bibliometric analysis, applications, research findings, and future directions. IEEE Access, 2023, vol. 11, pp. 13605—13635. https://doi.org/10.1109/ACCESS.2023.3243635
  62. Sowmya, V., Soman, K. P., Hassaballah, M. Hyperspectral image: fundamentals and advances. In: Hassaballah, M., Hosny, K. Recent Advances in Computer Vision. Studies in Computational Intelligence, vol. 804. Cham, Springer, 2019, pp. 401—424. https://doi.org/10.1007/978-3-030-03000-1_16
  63. Steinberg, A., Chabrillat,S., Stevens, A., Segl, K., Foerster, S. Prediction of common surface soil properties based on Vis-NIR airborne and simulated EnMAP imaging spectroscopy data: Prediction accuracy and influence of spatial resolution. Remote Sensing, 2016, vol. 8, no. 7: 613, pp. 1—20. https://doi.org/10.3390/rs8070613
  64. Storch, T., Honold, H.P., Chabrillat, S. et al. The EnMAP imaging spectroscopy mission towards operations. Remote Sensing of Environment, 2023, vol. 294: 113632, pp. 1—20. https://doi.org/10.1016/j.rse.2023.113632
  65. Ungar, S.G., Pearlman, J.S., Mendenhall, J.A., Reuter, D. Overview of the Earth observing one (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing, 2003, vol. 41, no. 6, pp. 1149—1159. https://doi.org/10.1109/TGRS.2003.815999
  66. Vasques, G.M., Demattê, J.A., Rossel, R.V., Ramírez-López, L., Terra, F.S. Soil classification using visible/near-infrared diffuse reflectance spectra from multiple depths. Geoderma, 2014, vol. 223, pp. 73—78. https://doi.org/10.1016/j.geoderma.2014.01.019
  67. Rossel, R.V., Walvoort, D.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 2006, vol. 131, no. 1—2, pp. 59—75. https://doi.org/10.1016/j.geoderma.2005.03.007
  68. Rossel, R.V., Behrens, T., Ben-Dor, E., Brown, D.J. et al. A global spectral library to characterize the world’s soil. Earth-Science Reviews, 2016, vol. 155, pp. 198—230. https://doi.org/10.1016/j.earscirev.2016.01.012
  69. Wang, J., He, T., Lv, C., Chen, Y., Jian, W. Mapping soil organic matter based on land degradation spectral response units using Hyperion images. International Journal of Applied Earth Observation and Geoinformation, 2010, vol. 12, pp. 171—180. https://doi.org/10.1016/j.jag.2010.01.002
  70. Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 2006, vol. 27, no. 14, pp. 3025—3033. https://doi.org/10.1080/01431160600589179
  71. Yokoya, N., Chan, J. C. W., Segl, K. Potential of resolution-enhanced hyperspectral data for mineral mapping using simulated EnMAP and Sentinel-2 images. Remote Sensing, 2016, vol. 8, no. 3: 172, pp. 1—18. https://doi.org/10.3390/rs8030172

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spectral reflectivity of clay soils of alluvial genesis in northeastern Brazil. The solid line shows the reflectivity spectrum of a natural sample, the dotted line shows the spectrum with the addition of gypsum [54].

Download (126KB)
3. Fig. 2. Spectral reflectivity of clay soils with different organic matter content for samples from Poznan, Poland [26].

Download (121KB)
4. Fig. 3. Spectral reflectance of clay soils collected from the New Mexico shrub steppe with an OM content of less than 1%. The volumetric moisture content is given on the right for each graph [47].

Download (127KB)

Copyright (c) 2025 Russian academy of sciences