Therapy of traumatic injuries of the spinal cord by magnetic nanoparticles: experimental aspects of promising technology

Cover Page

Abstract


In this analytical review an attempt to sum up the available data in magnetite nanoparticle-marked stem cells utilization is made. Now this question remains on the experimental study level. Available data is diversified and needs an integral look to be taken. It is found that magnetite nanoparticles are non-toxic for the cells and do not interrupt physiological metabolic pathways. They can also be captured by cell using different transporters. Cells containing the magnetite nanoparticles can migrate along the magnetic flux lines. Animals with traumatic spinal cord lesions that got the nanoparticles-containing cell therapy showed the neurological status improvement. There is very little data in usage of this method in clinical practice; the solution of this problem requires more clinical trials.

 


About the authors

S. V. Kolesov

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Author for correspondence.
Email: dr-kolesov@yandex.ru

Russian Federation, Moscow

V. V. Shvets

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: dr-kolesov@yandex.ru

Russian Federation, Moscow

M. L. Sazhnev

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: dr-kolesov@yandex.ru

Russian Federation, Moscow

A. A. Panteleev

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: dr-kolesov@yandex.ru

Russian Federation, Moscow

D. S. Gorbatyuk

N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics

Email: dr-kolesov@yandex.ru

Russian Federation, Moscow

References

  1. Talac R., Friedman J., Moore M. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials. 2004;25(9):1505-10.
  2. Arbab A., Jordan E., Wilson L., Yocum G., Lewis B., Frank J.
  3. In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum Gene Ther. 2004;15(4):351-60.
  4. Song M., Kim Y., Kim Y., Roh J., Kim S, Yoon B. Using a neo- dymium magnet to target delivery of ferumoxide-labeled human neural stem cells in a rat model of focal cerebral ischemia. Hum Gene Ther. 2010;21(5):603-10.
  5. Nishida K., Tanaka N., Nakanishi K. Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid. Neuroreports. 2006;17(12):1269-72.
  6. Tukmachev D., Lunov O., Zablotskii V., Dejneka A., Babic M., Sykova E. et al. An effective strategy of magnetic stem cell deliv- ery for spinal cord injury therapy. Nanoscale. 2015;7(9): 3954-8.
  7. Holle A., Engler A. Cell rheology: Stressed-out stem cells. Nat Mater. 2010;9:4-6.
  8. Cho H., Choi Y., Lee D., Park H., Seo Y., Jung H. et al. Effects of magnetic nanoparticle-incorporated human bone marrow- derived mesenchymal stem cells exposed to pulsed electromag- netic fields on injured rat spinal cord. Biotechnol Appl Biochem. 2013;60(6):596-602.
  9. Cores J., Caranasos T., Cheng K. Magnetically targeted stem cell delivery for regenerative medicine. J Funct Biomater. 2015; 6:526-46.
  10. Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. Superpara- magnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev. 2011;63:24-46.
  11. Sheng-nan S., Chao W., Zan-zan Z. Magnetic iron oxide nano- particles: Synthesis and surface coating techniques for biomedi- cal applications. Chin Phys. 2014;23:1-19.
  12. Umut E. Surface modification of nanoparticles used in biomedi- cal applications. Mod Surf Eng Treat. 2013;5:185-208.
  13. Tassa C., Shaw S., Weissleder R. Dextran-coated iron oxide nanoparticles: A versatile platform for targeted molecular imag- ing, molecular diagnostics, and therapy. Acc Chem Res. 2011; 44:842-52.
  14. Usher T., Walls S. Process of Making Carboxylated Dextran. Canada: SMART & BIGGAR; 2004.
  15. Yi G., Li S., Wang S., Moore R. Nanomedicine. New York: Springer; 2014.
  16. Cortajarea A., Ortega D., Ocampo S., Gonzalez-Garcia A., Cou- leaud P., Miranda R. et al. Engineering iron oxide nanoparticles for clinical settings. Nanobiomedicine; 2014.
  17. Hillaireau H., Couvreur P. Nanocarriers’ entry into the cell: Relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873-96.
  18. Cheung K., Shen D., Hensley T., Middleton R., Sun B., Liu W. et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat Commun. 2014;5:4880.
  19. Tang J., Shen D., Zhang J., Ligler F., Cheng K. Bispecific anti- bodies, nanoparticles and cells: Bringing the right cells to get the job done. Expert Opin Biol Ther. 2015;15(9):1-5.
  20. Amemori T., Romanyuk N., Jendelova P. Human conditionally immortalized neural cells improve locomotor function after spinal cord injury in the rat. Stem Cell Res Ther. 2013;4:68.
  21. Cocks G., Romanyuk N., Amemori T. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons. Stem Cell Res Ther. 2013;4(69):110.
  22. Zablotskii V., Dejneka A., Kubinova S., Le-Roy D., Dumas- Bouchiat F. Life on Magnets: Stem Cell Networking on Micro- Magnet Arrays. PLoS One. 2013;8(8):e70416.
  23. Marcus M., Moshe K., Baranes K., Levy I., Alon N., Martel S. et al. Iron oxide nanoparticles for neuronal cell applications: uptake study and magnetic manipulations. J Nanobiotechnol- ogy. 2016;14(37):1447.
  24. Pal A., Singh A., Nag T. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection. Int J Nanomedicine. 2013;8:2259-72.
  25. Vanecek V., Zablotskii V., Forostyak S. Highly efficient magnetic targeting of mesenchymal stem cells in spinal cord injury. Int J Nanomedicine. 2012;7:3719-30.
  26. Chotivichit A., Ruangchainikom M., Chiewvit P. Chronic spinal cord injury treated with transplanted autologous bone marrow- derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report. J Med Case Rep. 2015;9(79):111.
  27. Riggio C., Nocentini S., Catalayd M. Generation of magnetized olfactory ensheating cells for regenerative studies in the central and peripheral nervous tissue. Int J Mol Sci. 2013;14:10852-68.
  28. Margel S., Gura S. Nucleation and growth of magnetic metal oxide nanoparticles and its use. Israel; WO9962079; 2006.
  29. Nakamura M., Okano H. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res. 2013;23:70-80.
  30. Connell J., Patrick P., Yu Y., Lythgoe M., Kalber T. Advanced cell therapies: targeting, tracking and actuation of cells with magnetic particles. Regen Med. 2015;10:757-72.
  31. Foged C., Brodin B., Frokjaer S., Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharmacol. 2005;298:315-22.
  32. Kim J., Lee N., Kim B., Rhee W., Yoon S., Hyeon T. et al. En- hancement of neurite outgrowth in PC-12 cells by iron oxide nanoparticles. Biomaterials. 2011;32:2871-7.
  33. Mahmoudi M., Hofmann H., Rothen-Rutishauser B., Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev. 2012;112:2323-38.
  34. Meng X., Seton H., Lu L., Prior I., Thanh N., Song B. Magnetic CoPt nanoparticles as MRI contrast agent for transplanted neural stem cells detection. Nanoscale. 2011;3:977-84.
  35. Taylor A., Hermann A., Moss D., Sée V., Davies K., Williams S. et al. Assessing the efficacy of nano- and micro-sized magnetic particles as contrast agents for MRI cell tracking. PLoS One. 2014;9:e100259.

Statistics

Views

Abstract - 43

PDF (Russian) - 17

Cited-By


Refbacks

  • There are currently no refbacks.

Copyright (c) 2020 Kolesov S.V., Shvets V.V., Sazhnev M.L., Panteleev A.A., Gorbatyuk D.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies