This review presents the current understanding of the pathogenesis of Parkinson’s disease with the participation of different molecules (mitochondrial dysfunction, metabolic enzymes, enzymes from lysosomes, endosomes and ER, factors of the immune response and neuroinflammation, factors of the oxidative stress and proteasome degradation of proteins, chaperones, regulators of physiological and pathological processes, structural and transport proteins, molecules of signal transduction, glial proteins and proteins of synaptic vesicles, neurotoxic proteins, molecules of neuron-glia communication), which may be the genomic and/or proteomic biomarkers of this type of neurodegeneration.

Full Text


About the authors

Nataliya A Malinovskaya

Krasnoyarsk State Medical University named after prof. V.F. Voyno-Yasenetsky

660022, Krasnoyarsk, Partizana Zheleznyaka 1
Department of Biochemistry with courses Medical, Pharmaceutical and Toxicological Chemistry


  1. Драпкина О.М., Ашихмин Я.И., Ивашкин В.Т. Роль шаперонов в патогенезе сердечно-сосудистых заболеваний и кардиопротекции // Росс. мед. вести. 2008. Т. 13, №1. С. 56‒69
  2. Москалев А.А. О XIII конгрессе Международной ассоциации биомедицинских геронтологов «Общие механизмы старения, рака и возрастзависимых заболеваний» // Успехи геронтологии. 2009. Т. 22. С. 522‒525
  3. Abbracchio M.P., Burnstock G., Verkhratsky A., Zimmermann H. Purinergic signalling in the nervous system: an overview // Trends Neurosci. 2009. Vol. 32(1). P. 19‒29
  4. Bartels T., Choi J.G., Selkoe D.J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation // Nature. 2011. Vol. 477. P. 107‒111
  5. Bhandary B., Marahatta A., Kim H.R., Chae H.J. An Involvement of Oxidative Stress in Endoplasmic Reticulum Stress and Its Associated Diseases // Int. J. Mol. Sci. 2013. Vol. 14(1). P. 434‒456
  6. Billia F., Hauck L., Grothe D. et al. Parkinson-susceptibility gene DJ-1/PARK7 protects the murine heart from oxidative damage in vivo // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110(15). P. 6085‒6090
  7. Bras J., Singleton A., Cookson M.R., Hardy J. Emerging pathways in genetic Parkinson’s disease: Potential role of ceramide metabolism in Lewy body disease // FEBS J. 2008. Vol. 275. P. 5767‒5773
  8. Carnevale D., De Simone R., Minghetti L. Microglia-Neuron Interaction in Inflammatory and Degenerative Diseases: Role of Cholinergic and Noradrenergic Systems // CNS Neurol. Disord. Drug Targets. 2007. Vol. 6(6). P. 388‒397
  9. Choi D.H., Cristovao A.C., Guhathakurta S. et al. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease // Antioxid. Redox. Signal. 2012. Vol. 16(10). P. 1033‒1045
  10. Dong J., Chen P., Wang R. et al. NADPH oxidase: a target for the modulation of the excessive oxidase damage induced by overtraining in rat neutrophils // Int. J. Biol. Sci. 2011. Vol. 7(6). P. 881‒891
  11. Edwards Y.J.K., Beecham G.W., Scott W.K. et al. Identifying consensus disease pathways in Parkinson’s disease using an integrative systems biology approach // PLoS ONE. 2011. Vol. 6(2). P. 1‒11
  12. Fasano M., Bergamasco B., Lopiano L. The proteomic approach in Parkinson’s disease // Proteomics Clin. Appl. 2007. Vol. 1. P. 1428‒1435
  13. Fields R.D., Burnstock G. Purinergic signalling in neuron-glia interactions // Nat. Rev. Neurosci. 2006. Vol. 7(6). P. 423‒436
  14. Fukuda S., Fini C.A., Mabuchi T. et al. Focal cerebral ischemia induces active proteases that degrade microvascular matrix // Stroke. 2004. Vol. 35(4). P. 998–1004
  15. Galpern W.R., Lang A.E. Interface between tauopathies and synucleinopathies: a tale of two proteins // Ann. Neurol. 2006. Vol. 59(3). P. 449‒458
  16. Gasser T. Genomic and proteomic biomarkers for Parkinson disease // Neurology. 2009. Vol. 72. P. S27‒S31
  17. Giaume C., Koulakoff A., Roux L. et al. Astroglial networks: a step further in neuroglial and gliovascular interactions // Nat. Rev. Neurosci. 2010. Vol. 11(2). P. 87‒99
  18. Karpinar D.P., Balija M.B.G., Kugler S. et al. Pre-fibrillar α-synuclein variants with impaired β-structure increase neurotoxicity in Parkinson’s disease models // EMBO J. 2009. Vol. 28, N.20. P. 3256‒3268
  19. Krugera R., Sharma M., Riess O. et al. A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson’s disease // Neurobiol. Aging. 2011. Vol. 32(3). P. 548.e9‒548.e18
  20. Lansbury Jr P.T., Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products // Curr. Opin. Genet. Dev. 2002. Vol. 12(3). P. 299‒306
  21. Lautier C., Goldwurm S., Durr A. et al. Mutations in the GIGYF2 (TNRC15) Gene at the PARK11 Locus in Familial Parkinson Disease // Am. J. Hum. Genet. 2008. Vol. 82(4). P. 822‒833
  22. Lazzarini M., Martin S., Mitkovski M. et al. Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model // Glia. 2013 P. 1‒17
  23. Lei P., Ayton S., Finkelstein D.I. et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export // Nat. Med. 2012. Vol. 18(2). P. 1‒5
  24. Lickera V., Kovarib E., Hochstrasserc D.F., Burkhard P.R. Proteomics in human Parkinson’s disease research // J. Proteomics. 2009. Vol. 73(1). P. 10‒29
  25. Loeffler D.A., Camp D.M., Conant S.B. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study // J. Neuroinflammation. 2006. Vol. 3. P. 1‒8
  26. Lu C.S., Lai S.C., Wu R.M. et al. PLA2G6 Mutations in PARK14-Linked Young-Onset Parkinsonism and Sporadic Parkinson’s Disease // Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2012. Vol. 159B(2). P. 183‒191
  27. Ludolpha A.C., Kassubeka J., Landwehrmeyera B.G. et al. Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options // Eur. J. Neurol. 2009. Vol. 16(3). P. 297‒309
  28. Luong K., Nguyen L. Role of vitamin D in Parkinson’s disease // ISRN Neurol. 2012. P. 1‒11
  29. Matute C., Cavaliere F. Neuroglial interactions mediated by purinergic signalling in the pathophysiology of CNS disorders // Sem. Cell. Devel. Biol. 2011. Vol. 22. P. 252‒259
  30. Mayo L., Jacob-Hirsch J., Amariglio N. et al. Dual role of CD38 in microglial activation and activation-induced cell death // J. Immunol. 2008. Vol. 181. P. 92‒103
  31. Mehta S.L., Manhas N., Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics // Brain Res. Rev. 2007. Vol. 54(1). P. 34–66
  32. Michell A.W., Lewis S.J.G., Foltynie T., Barker R.A. Biomarkers and Parkinson’s disease // Brain. 2004. Vol. 127. P. 1693‒1705
  33. Ramonet D., Podhajska A., Stafa K. et al. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity // Hum. Mol. Genet. 2012. Vol. 21(8). P. 1725‒1743
  34. Ren K., Dubner R. Neuron-glia crosstalk gets serious: Role in pain hypersensitivity // Curr. Opin. Anaesthesiol. 2008. Vol. 21(5). P. 570‒579
  35. Ricci G., Volpi L., Pasquali L. et al. Astrocyte–neuron interactions in neurological disorders // J. Biol. Phys. 2009. Vol. 35. P. 317‒336
  36. Sanchez J.-C., Coute Y., Allard L. et al. Biomedical Applications of Proteomics // Proteome Research. Principles and Practice. 2007. P. 193‒221
  37. Shaham S. Glia–Neuron Interactions in Nervous System Function and Development // Curr. Top. Dev. Biol. 2005. Vol. 69. P. 39‒66
  38. Shyu W.-C., Lin S.-Z., Chiang M.-F. et al. Overexpression of PrPC by Adenovirus-Mediated Gene Targeting Reduces Ischemic Injury in a Stroke Rat Model // J. Neurosci. 2005. Vol. 25(39). P. 8967– 8977
  39. Song S., Jang S., Park J. et al. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila // J. Biol. Chem. 2013. Vol. 288(8). P. 5660-5672
  40. Sowell R.A., Owen J.B., Butterfield D.A. Proteomics in animal models of Alzheimer’s and Parkinson’s diseases // Ageing Res. Rev. 2009. Vol. 8(1). P. 1‒17
  41. Srivastava G., Singh K., Tiwari M.N., Singh M.P. Proteomics in Parkinson’s disease: current trends, translational snags and future possibilities // Exp. Rev. Proteomics. 2010. Vol. 7(1). P. 127‒139
  42. Vilarino-Guell C., Ross O.A., Aasly J.O. et al. An independent replication of PARK16 in Asian samples // Neurology. 2010. Vol. 75(24). P. 2248‒2249
  43. Werner C.J., Heynyvon Haussen R., Mall G., Wolf S. Proteome analysis of human substantia nigra in Parkinson’s disease // Proteome Sci. 2008. Vol. 6. P. 1‒8
  44. Wills J., Jones J., Haggerty T. et al. Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia // Exp. Neurol. 2010. Vol. 225(1). P. 210‒208
  45. Witt S.N. Hsp70 molecular chaperones and Parkinson’s disease // Biopolymers. 2010. Vol. 93(3). P. 218‒228
  46. Wood H. Proteomic tools identify dementia biomarkers in PD // Nat. Rev. Neurol. 2012. Vol. 8. P. 180
  47. Wu D.C., Teismann P., Tieu K. et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100(10). P. 6145‒6150
  48. Zhao T., De Graaff E., Breedveld G.J. et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15) // PLoS One. 2011. Vol. 6(2). P. 1‒13
  49. Zhu L.H., Luo X.G., Zhou Y.S. et al. Lack of association between three single nucleotide polymorphisms in the PARK9, PARK15, and BST1 genes and Parkinson’s disease in the northern Han Chinese population // Chin. Med. J. (Engl). 2012. Vol. 125(4). P. 588‒592



Abstract - 61


Article Metrics

Metrics Loading ...




  • There are currently no refbacks.

Copyright (c) 2013 Malinovskaya N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies