Umbilical cord blood stem cells: transplantation prospects in neurological practice

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Umbilical cord blood has evolved from being considered a mere cellular/tissue waste product after childbirth to a valuable biological material with a wide regenerative potential. Today, hematopoietic cord blood stem cells are used in the same way as bone marrow and mobilised peripheral blood as part of the standard medical treatment for haemoblastoses and hereditary blood diseases. There is an increasing amount of experimental data showing possibility of umbilical cord blood cell fractions using for treatment of non-hematological diseases and, in particular, diseases of the central nervous system. One of the key challenges in cell therapy for central nervous system diseases is the choice of cellular material for neurotransplantation. This is particularly relevant for ischemic and traumatic injuries, as well as neurodegenerative diseases. Stem or mature somatic cells prepared for neurotransplantation should have predictable and reproducible characteristics thataccording therapeutic purposes, exactly: trophic and/or neuroprotective action to increase neurons viability in damaged area; axon growth stimulation and myelination; cell matrix restoration or predictable differentiation direction to replace amount of lost brain or spinal cord cells. The fact that umbilical cord blood contains not only hematopoietic, but also various non-hematopoietic stem cells with a wide regenerative potential has become the basis for active use of these cells for neurotransplantation. The proposed review provides historical information about umbilical cord blood introduction into practical medicine, its cellular composition and clinical applications of stem cells various types for children central nervous system diseases treatment, such as ischemic encephalopathy, stroke, cerebral hemorrhage, cerebral palsy, autism, and in adults — for stroke treatment, spinal cord injury and neurodegenerative diseases.

Full Text

Restricted Access

About the authors

Ilnaz M. Gazizov

Kazan State Medical University

Email: ilnazaziz@mail.ru
ORCID iD: 0000-0003-3396-8643
SPIN-code: 4219-6480

MD, Cand. Sci. (Med.), Head, Anatomy Department

Russian Federation, Kazan

Andrey A. Izmailov

Kazan State Medical University

Email: gostev.andrei@mail.ru
ORCID iD: 0000-0002-8128-4636
SPIN-code: 9629-8511

MD, Cand. Sci. (Med.), Head, Cell and Molecular Medical Laboratory

Russian Federation, Kazan

Elmira A. Elagina

Limited liability company “Avicenna-Endocrinology”

Email: elaginabsk@yandex.ru
ORCID iD: 0000-0002-4598-1688
SPIN-code: 1440-4782

Tutor, Clinical Medical Psychologyst

Russian Federation, Kazan

Zufar Z. Safiullov

Kazan State Medical University

Author for correspondence.
Email: redblackwhite@mail.ru
ORCID iD: 0000-0003-4577-3448
SPIN-code: 6987-9144

MD, Cand. Sci. (Med.), Tutor, Anatomy Department

Russian Federation, Kazan

References

  1. Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43:357–361.
  2. Nakahata T, Ogawa M. Hemopoietic colony-forming cells in umbilical cord blood with extensive capability to generate mono- and multipotential hemopoietic progenitors. J Clin Invest. 1982;70:1324–1332. doi: 10.1172/jci110734
  3. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828–3832. doi: 10.1073/pnas.86.10.3828
  4. Gluckman E, Broxmeyer HA, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–1178. doi: 10.1056/NEJM198910263211707
  5. Kohn DB, Weinberg KI, Nolta JA, et al. Engraftment of gene-modified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med. 1995;1(10):1017–1023. doi: 10.1038/nm1095-1017
  6. Solves P, Mirabet V, Roig R. Volume reduction in routine cord blood banking. Curr Stem Cell Res Ther. 2010;5:362–366. doi: 10.2174/157488810793351703
  7. Akel S, Regan D, Wall D, et al. Current thawing and infusion practice of cryopreserved cord blood: The impact on graft quality, recipient safety, and transplantation outcomes. Transfusion. 2014;54:2997–3009. doi: 10.1111/trf.12719
  8. Ademokun J, Chapman C, Dunn J, et al. Umbilical cord blood collection and separation for haematopoietic progenitor cell banking. Bone Marrow Transplant. 1997;19:1023–1028. doi: 10.1038/sj.bmt.1700788
  9. Reboredo NM, Diaz A, Castro A, Villaescusa RG. Collection, processing and cryopreservation of umbilical cord blood for unrelated transplantation. Bone Marrow Transplant. 2001;26:1263–1270. doi: 10.1038/sj.bmt.1702728
  10. Neuhoff S, Moers J, Rieks M, et al. Proliferation differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007;35(7):1119–1131. doi: 10.1016/j.exphem.2007.03.019
  11. Pranke P, Failace RR, Allebrandt WF, et al. Hematologic and immunophenotypic characterization of human umbilical cord blood. Acta Haematol. 2001;105:71–76. doi: 10.1159/000046537
  12. Harris D, Schumacher M, Locascio J, et al. Phenotypic and functional immaturity of human umbilical cord blood T lymphocytes. Proc Natl Acad Sci USA. 1992;89:10006–10010. doi: 10.1073/pnas.89.21.10006
  13. D’Arena G, Musto P, Cascavilla N, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: Immunophenotypic features. Haematologica. 1998;83:197–203.
  14. Ballen KK, Wilson M, Wuu J, et al. Bigger is better: maternal and neonatal predictors of hematopoietic potential of umbilical cord blood units. Bone Marrow Transplant. 2001;27(1):7–14. doi: 10.1038/sj.bmt.1702729
  15. Cervera A, Lillo R, García-Sánchez F, et al. Flow cytometric assessment of hematopoietic cell subsets in cryopreserved preterm and term cord blood, influence of obstetrical parameters, and availability for transplantation. Am J Hematol. 2006;81(6):397–410. doi: 10.1002/ajh.20598
  16. Broxmeyer HE. Biology of cord blood cells and future prospects of enhanced clinical benefit. Cytotherapy. 2005;7(3):209–218. doi: 10.1080/14653240510027190
  17. Ali H, Bahbahani H. Umbilical cord blood stem cells — potential therapeutic tool for neural injuries and disorders. Acta Neurobiol Exp. 2010;70:316–324.
  18. Kogler G, Sensken S, Airey J, et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200(2):123–135. doi: 10.55782/ane-2010-1804
  19. Mcguckin P, Forraz N, Baradez M, et al. Production of stem cells with embryonic characteristics from human umbilical cord blood. Cell Prolif. 2005;38:245–255. doi: 10.1111/j.1365-2184.2005.00346.x
  20. Paton M, McDonald C, Allison B, et al. Perinatal brain injury as a consequence of preterm birth and intrauterine inflammation: Designing targeted stem cell therapies. Front Neurosci. 2017;11(200);1–12. doi: 10.3389/fnins.2017.00200
  21. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–242. doi: 10.1046/j.1365-2141.2000.01986.x
  22. Abbott A. Doubt cast over tiny stem cells. Nature. 2013;499:390. doi: 10.1038/499390a
  23. Podesta M, Bruschettini M, Cossu C, et al. Preterm cord blood contains a higher proportion of immature hematopoietic progenitors compared to term samples. PLoS One. 2015;10(9):e0138680. doi: 10.1371/journal.pone.0138680
  24. Gluckman E. Milestones in umbilical cord blood transplantation. Blood Rev. 2011;25:55–59. doi: 10.1016/j.blre.2011.06.003
  25. Behzad-Behbahani A, Pouransari R, Tabei SZ, et al. Risk of viral transmission via bone marrow progenitor cells versus umbilical cord blood hematopoietic stem cells in bone marrow transplantation. Transplant Proc. 2005;37:3211–3212. doi: 10.1016/j.transproceed.2005.07.007
  26. Broxmeyer H, Hangoc G, Cooper S, et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA. 1992;89:4109–4113. doi: 10.1073/pnas.89.9.4109
  27. Gluckman F, Rocha V. History of the clinical use of umbilical cord blood hematopoietic cells. Cytotherapy. 2005;7:219–227. doi: 10.1080/14653240510027136
  28. Vaziri H, Dragowska W, Allsopp RC, et al. Evidence for a mitotic clock in human hematopoietic stem cells: Loss of telomeric DNA with age. Proc Natl Acad Sci USA. 1994;91:9857–9860. doi: 10.1073/pnas.91.21.9857
  29. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822. doi: 10.1182/blood-2004-04-1559
  30. Gatina DZ, Gazizov IN, Zhuravleva MN, et al. Induction of angiogenesis by genetically modified human umbilical cord blood mononuclear cells. Int J Mol Sci. 2023;24(5):4396. doi: 10.3390/ijms24054396
  31. Garbuzova-Davis S, Willing AE, Zigova N, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: Distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12(3):255–270. doi: 10.1089/152581603322022990
  32. Islamov RR, Rizvanov AA, Mukhamedyarov MA, et al. Symptomatic improvement, increased life-span and sustained cell homing in amyotrophic lateral sclerosis after transplantation of human umbilical cord blood cells genetically modified with adeno-viral vectors expressing a neuro-protective factor and a neural cell adhesion molecule. Curr Gene Ther. 2015;15(3):266–276. doi: 10.2174/1566523215666150126122317
  33. Koerbling M, Estrov RZ, Champlin R, Shpall E. Umbilical cord blood-derived cells for tissue repair. Cytotherapy. 2005;7(3):258–261. doi: 10.1080/14653240510027145
  34. Neuhoff S, Moers J, Rieks M, et al. Proliferation, differentiation, and cytokine secretion of human umbilical cord blood-derived mononuclear cells in vitro. Exp Hematol. 2007;35(7):1119–1131. doi: 10.1016/j.exphem.2007.03.019
  35. Fan CG, Zhang QJ, Tang FW, et al. Human umbilical cord blood cells express neurotrophic factors. Neurosci Lett. 2005;380(3):322–325. doi: 10.1016/j.neulet.2005.01.070
  36. Yang J, Ren Z, Zhang C, et al. Safety of autologous cord blood cells for preterms: A descriptive study. Stem Cells Int. 2018;15:5268057. doi: 10.1155/2018/5268057
  37. Yang WZ, Zhang Y, Wu F, et al. Safety evaluation of allogeneic umbilical cord blood mononuclear cell therapy for degenerative conditions. J Transl Med. 2010;3(8):75–81. doi: 10.1186/1479-5876-8-75
  38. Liu J, Sun W, Liu C, Na Q. Umbilical cord blood-derived exosomes in maternal-fetal disease: A review. Reprod Sci. 2023;309(1);54–61. doi: 10.1007/s43032-022-00879-1
  39. Hashimoto S, Kato K, Kai S, et al. Adverse events caused by cord blood infusion in Japan during a 5-year period. Vox Sang. 2023;118(1):84–92. doi: 10.1111/vox.13379
  40. Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: An updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23(10):1607–1613. doi: 10.1016/j.bbmt.2017.05.032
  41. Gunn AJ, Laptook AR, Robertson NJ, et al. Therapeutic hypothermia translates from ancient history in to practice. Pediatr Res. 2017;81(1–2):202–209. doi: 10.1038/pr.2016.198
  42. Wassink G, Gunn ER, Drury PP, et al. The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci. 2014;8(8):1–11. doi: 10.3389/fnins.2014.00040
  43. Cotten CM, Murtha AP, Goldberg RN, et al. Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr. 2014;164:973–979. doi: 10.1016/j.jpeds.2013.11.036
  44. Tsuji M, Sawada M, Watabe S, et al. Autologous cord blood cell therapy for neonatal hypoxic-ischaemic encephalopathy: A pilot study for feasibility and safety. Sci Rep. 2020;10(1):4603. doi: 10.1038/s41598-020-61311-9
  45. Raju TN, Nelson KB, Ferriero D, Lynch JK. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics. 2007;120:609–616. doi: 10.1542/peds.2007-0336
  46. Lehman LL, Rivkin MJ. Perinatal arterial ischemic stroke: Presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51(6):760–768. doi: 10.1016/j.pediatrneurol.2014.07.031
  47. Sun J, Allison J, McLaughlin C, et al. Differences in quality between privately and publicly banked umbilical cord blood units: A pilot study of autologous cord blood infusion in children with acquired neurologic disorders. Transfusion. 2010;50:1980–1987. doi: 10.1111/j.1537-2995.2010.02720.x
  48. Min K, Song J, Kang JY, et al. Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: A double-blind, randomized, placebo-controlled trial. Stem Cells. 2013;31(3):581–591. doi: 10.1002/stem.1304
  49. Sun JM, Song AW, Case LE, et al. Effect of autologous cord blood infusion on motor function and brain connectivity in young children with cerebral palsy: A randomized, placebo-controlled trial. Stem Cells Transl Med. 2017;6:2071–2078. doi: 10.1002/sctm.17-0102
  50. Huang L, Zhang C, Gu J, et al. A randomized, placebo-controlled trial of human umbilical cord blood mesenchymal stem cell infusion for children with cerebral palsy. Cell Transplant. 2018;27:325–334. doi: 10.1177/0963689717729379
  51. Maenner MJ, Warren Z, Williams AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 Sites, United States, 2020. MMWR Surveill Summ. 2023;72:1–14. doi: 10.15585/mmwr.ss7202a1
  52. Lv YT, Zhang Y, Liu M, et al. Transplantation of human cord blood mononuclear cells and umbilical cord-derived mesenchymal stem cells in autism. J Transl Med. 2013;11:196. doi: 10.1186/1479-5876-11-196
  53. Li Q, Chen CF, Wang DY, et al. Transplantation of umbilical cord blood mononuclear cells increases levels of nerve growth factor in the cerebrospinal fluid of patients with autism. Genet Mol Res. 2015;14(3):8725–8732. doi: 10.4238/2015.July.31.21
  54. Dawson G, Sun JM, Davlantis KS, et al. Autologous cord blood infusions are safe and feasible in young children with autism spectrum disorder: Results of a single-center phase I open-label trial. Stem Cells Transl Med. 2017;6(5):1332–1339. doi: 10.1002/sctm.16-0474
  55. Murias M, Major S, Compton S, et al. Electrophysiological biomarkers predict clinical improvement in an open-label trial assessing efficacy of autologous umbilical cord blood for treatment of autism. Stem Cells Transl Med. 2018;7(11):783–791. doi: 10.1002/sctm.18-0090
  56. Carpenter KLH, Major S, Tallman C, et al. White matter tract changes associated with clinical improvement in an open-label trial assessing autologous umbilical cord blood for treatment of young children with autism. Stem Cells Transl Med. 2019;8(2):138–147. doi: 10.1002/sctm.18-0251
  57. Chez M, Lepage C, Parise C, et al. Safety and observations from a placebo-controlled, crossover study to assess use of autologous umbilical cord blood stem cells to improve symptoms in children with autism. Stem Cells Transl Med. 2018;7(4):333–341. doi: 10.1002/sctm.17-0042
  58. Szpecht D, Szymankiewicz M, Nowak I, Gadzinowski J. Intraventricular hemorrhage in neonates born before 32 weeks of gestation-retrospective analysis of risk factors. Childs Nerv Syst. 2016;32:1399–1404. doi: 10.1007/s00381-016-3127-x
  59. Gotardo JW, Volkmer NFV, Stangler GP, et al. Impact of peri-intraventricular haemorrhage and periventricular leukomalacia in the neurodevelopment of preterms: A systematic review and meta-analysis. PLoS ONE. 2019;14:e0223427. doi: 10.1371/journal.pone.0223427
  60. Ahn SY, Chang YS, Sung SI, Park WS. Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: Phase I dose-escalation clinical trial. Stem Cells Transl Med. 2018;7:847–856. doi: 10.1002/sctm.17-0219
  61. Lee TK, Lu CY, Tsai ST, et al. Complete restoration of motor function in acute cerebral stroke treated with allogeneic human umbilical cord blood monocytes: Preliminary results of a phase I clinical. Trial Cell Transplant. 2021;30:1–7. doi: 10.1177/09636897211067447
  62. Kang KS, Kim SW, Oh YH, et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: A case study. Cytotherapy. 2005;7(4):368–373. doi: 10.1080/14653240500238160
  63. Liu J, Han D, Wang Z, et al. Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy. 2013;15(2):185–191. doi: 10.1016/j.jcyt.2012.09.005
  64. Ichim TE, Solano F, Lara F, et al. Feasibility of combination allogeneic stem cell therapy for spinal cord injury: A case report. Int Arch Med. 2010;3:30. doi: 10.1186/1755-7682-3-30
  65. Yao L., He C., Zhao Y., et al. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury: Electrophysiological changes and long-term efficacy. Neural Regen Res. 2013;8(5):397–403. doi: 10.3969/j.issn.1673-5374.2013.05.002
  66. Zhu H, Poon W, Liu Y, et al. Phase I–II clinical trial assessing safety and efficacy of umbilical cord blood mononuclear cell transplant therapy of chronic complete spinal cord injury. Cell Transplant. 2016;25(11):1925–1943. doi: 10.3727/096368916X691411
  67. Smirnov VA, Radaev SM, Morozova YV, et al. Systemic administration of allogeneic cord blood mononuclear cells in adults with severe acute contusion spinal cord injury: Phase 1/2a pilot clinical study-safety and primary efficacy evaluation. World Neurosurg. 2022;161;319–338. doi: 10.1016/j.wneu.2022.02.004
  68. Ghen MJ, Roshan R, Roshan RO, et al. Potential clinical applications using stem cells derived from human umbilical cord blood. Reproductive BioMedicine Online. 2006;13(4):562–572.
  69. Meng M, Liu Y, Wang W, et al. Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am J Transl Res. 2018;10(1):212–223.
  70. Gong D, Wang W, Yuan X, et al. Long-term clinical efficacy of human umbilical cord blood mononuclear cell transplantation by lateral atlanto-occipital space puncture (Gong’s puncture) for the treatment of multiple system atrophy. Cell Transpl. 2022;31:1–6. doi: 10.1177/09636897221136553
  71. Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer’s disease dementia: A phase I clinical trial. Alzheimer's Research and Therapy. 2021;13(1):154. doi: 10.1186/s13195-021-00897-2
  72. Master YL, Tian BWM, Jin MXF, et al. A clinical research of 11cases of human umbilical cord mesenchymal stem cells for curing senile vascular dementia. Transpl Immunol. 2022;74:101669. doi: 10.1016/j.trim.2022.101669

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Potential mechanisms of neuroprotective action of umbilical cord blood mononuclear fraction cells in brain diseases. The high migration potential of umbilical cord blood mononuclear cells allows them to penetrate into the nervous tissue both from the bloodstream and from the cerebrospinal fluid. In the field of neurodegeneration, angiogenesis due to endothelial progenitor cells of umbilical cord blood, enhancing the trophism of nervous tissue, maintaining homeostasis by newly formed microglial cells from umbilical cord blood monocytes, as well as the production of cytokines and neurotrophic factors by umbilical cord blood mononuclear cells are considered the main mechanisms of neuroprotective action of umbilical cord blood cells after intravenous or intrathecal infusion. МКПК — mononuclear cells of umbilical cord blood; ЭПК — endothelial progenitor cell of umbilical cord blood; Мон — monocyte of umbilical cord blood; H — neuron; A — astrocyte.

Download (694KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 75562 от 12 апреля 2019 года.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies