The bioenergetic characteristics of mitochondria of the rat liver at low body temperatures


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Many of the pathological effects of hypothermia are directly or indirectly associated with changes in the functioning of mitochondria, the sensitive indicators of which are their bioenergetics characteristics. In this paper, the bioenergetic characteristics of isolated rat liver mitochondria in normal and hypothermia of different depths were investigated. Moderate (30 °C) hypothermia was found to significantly increase the respiratory rate of mitochondria. The deepening of the hypothermic state to 20 °C continues to stimulate respiration, however, increase in its rate becomes less pronounced relatively moderate hypothermia. In both moderate and deep hypothermia, the rate of oxidative phosphorylation is increased, and respiratory controls, P/O, and sensitivity to 2.4 DNP of mitochondrion are reduced. Many of these changes in mitochondrial respiratory parameters are more pronounced with moderate hypothermia. A comparative analysis of the bioenergetic characteristics of mitochondria obtained in the study of glutamate- and succinate-dependent respiration suggests that the stimulation of mitochondrial respiration during hypothermia occurs mainly due to changes in the functioning of Complex I of the respiratory chain.

Full Text

Restricted Access

About the authors

R. A Khalilov

Dagestan State University

Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics

S. I Khizrieva

Dagestan State University

Post-Graduate student

A. M Dzhafarova

Dagestan State University

Email: albina19764@mail.ru
Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics

V. R Abdullaev

Dagestan State University

Ph.D. (Biol.), Assistant Professor, Department of Biochemistry and Biophysics

References

  1. Григорьев Е.В., Шукевич Д.Л., Плотников Г.П., Тихонов Н.С. Терапевтическая гипотермия: возможности и перспективы // Клиническая медицина. 2014. № 9. С. 9-16.
  2. Osellame L.D., Blacker T.S., Duchen M.R. Cellular and molecular mechanisms of mitochondrial function // Best Pract. Res. Clin. Endocrinol. Metab. 2012; 26:711-23.
  3. Мирская Р.О. Исследование энергетических процессов в митохондриях тканей крыс при гипотермии: Автореф. дисс.. канд. биол. наук. Махачкала: Дагестанский государственный университет, 2000. 27 с.
  4. Рыбальченко В.К., Коганов М.М. Структура и функции мембран. Киев: ВШ, 1998. 312 с.
  5. Маяхи М.Т.Д., Кличханов Н.К. Влияние даларгина на содержание гормонов гипофизарно-надпочечникового и гипофизарно-тиреоидного эндокринного комплексов в крови крыс при гипотермии // Известия Самарского научного центра РАН. 2012. № 4. С. 273-77.
  6. Волжина Н.Г. Углеводный и энергетический обмен головного мозга при адаптации к переохлаждениям: авто-реф. дис.. доктора биол. наук: 03.00.04 / Ростов-на-Дону, 1992. С. 36.
  7. Cheng S.-Y., Leonard J.L., Davis P.J. Molecular aspects of thyroid hormone actions // Endocr. Rev. 2010; 31(2): 139-70.
  8. Маслов Л.Н., Лишманов Ю.Б., Халиулин И.Г. И др. Разобщающие белки и их роль в регуляции устойчивости мозга и сердца к действию ишемии и реперфузии // Российский физиологический журнал им. Сеченова. 2011; 97 (8): 761-780.
  9. Скулачев В.П., Богачев А.В., Каспаринский Ф.О. Мембранная биоэнергетика. М.: МГУ, 2012. С. 368.
  10. Blagojevic D. Free radical biology in hypothermia / Systems biology of free radicals and antioxidants / Berlin Heidelberg: Springer-Verla. 2014. P. 376-92.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Russkiy Vrach Publishing House

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies