REVIEW OF METHODS FOR PHARMACEUTICAL ANALYSIS OF SULFUR-CONTAINING ANTIOXIDANTS


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Antioxidant protection is an effective and recognized way to control the free-radical oxidative mechanism in live organisms. Antioxidants are widely used in the treatment of hepatitis, atherosclerosis, and malignancies. One of the promising directions for the synthesis of new antioxidants is the inclusion of sulfur in its structures. Sulfur is an element that is easily oxidized and, in addition, is able to bind heavy metal cations. Methods for pharmaceutical analysis of such pharmaceuticals should estimate adeguate the condition of important functional groups and, if it is possible, correlate with antioxidant effect. In this research work methods for guality control of sulfur-containing antioxidant in pharmaceuticals and biosamples are reviewed. For this reason methods for analysis of thioctic acid, probucol, bucillamine and disulfiram, represented in European Pharmacopoeia 8th edition, USP 41, British Pharmacopoeia 2016, Japanese Pharmacopoeia 17th edition, were analysed. It was estimated, that along with reliable pharmacopoeial guantification methods, such as titrimetry, spectrophotometry, and high-performance liguid chromatography, electrochemical methods are being actively developed for the analysis of antioxidants. These methods can be used definitely or as detection for chromatography. Quantitative de- termination based on the redox potential of antioxidants can adequately reflect the functional state of such pharmaceuticals and thus guarantee its efficacy. Due to their high sensitivity and relative ease of sample preparation, electrochemical methods can also be used to determine the content of sulfur-containing antioxidants in biological samples. However, most of the considered methods of analyzing drugs in biosamples are chromatographic. This is because HPLC allow to determine at once pharmaceuticals and its metabolites, and HPLC-MS enable to identify the structure of metabolites.

Full Text

Restricted Access

About the authors

T. G Shinko

Novosibirsk State Medical University

Email: shinko.tatiana@yandex.ru
Post-graduate Student, Pharmaceutical Department Novosibirsk, Russia

S. V Terentyeva

Novosibirsk State Medical University

Email: terentyeva_sv@mail.ru
Dr.Sc. (Pharm.) Novosibirsk, Russia

E. A Ivanovskaya

Novosibirsk State Medical University

Email: el-ivanovskaja@yandex.ru
Dr.Sc. (Pharm.), Professor Novosibirsk, Russia

References

  1. Трегубова И.А., Косолапое В.А., Спасов А.А. Антиоксиданты: современное состояние и перспективы. Успехи физиологических наук. 2012; 43(1):75-94.
  2. Navari-Izzo F., Quartacci M.F., Sgherri C. Lipoic acid: A unique antioxidant in the detoxification of activated oxygen species. В: Plant Physiology and Biochemistry. 2002; 40(6-8): 463-470.
  3. Wielandt A.M., Vollrath V., Farias M., Chianale J. Bucillamine induces glutathione biosynthesis via activation of the transcription factor Nrf2. Biochem Pharmacol. 2006; 72(4): 455-462.
  4. Zimetbaum P., Eder H., Frishman W. Probucol: Pharmacology and clinical application. Journal of Clinical Pharmacology. 1990; 30: 3-9.
  5. Золотарева М.С., Тюкова В.С. Валидация методики количественного определения дисульфирама в субстанции на основе комплекса включения гидроксипропил-Р-циклодекстрина с дисульфирамом. Современная наука: исследования, технологии, проекты. Сборник V междунар. науч.-практич. конф. (Москва, 8 ноября 2015 г.). 2015; 251-258.
  6. Kaul L., Suss R., Zannettino A., Richter K. The revival of dithiocarbamates - from pesticides to innovative medical treatment. iScience. 2021; 24(2): 102092.
  7. Патент № 2426097 Российская Федерация, МПК G01N 21/78. Способ количественного определения лекарственных веществ в фармакопейных препаратах. В.П. Калашников, А.И. Сливкин, Л.Ю. Яковлев; заявитель и патентообладатель ГОУ ВПО «Воронежский государственный университет». №2010106669/28; заявл. 24.02.2010; опубл. 10.08.2011; бюл. № 22. 9 с.
  8. Bunaciu A.A., Aboul-Enein H.Y., Fleschin §. Quantitative analysis of bucillamine and its pharmaceutical formulation using FT-IR spectroscopy. Farmaco. 2005; 60(8): 685-688.
  9. Walash M.I., Metwally M.E.S., El-Brashy A.M., Abdelal A.A. Kinetic spectrophotometric determination of some sulfur containing compounds in pharmaceutical preparations and human serum. Farmaco. 2003; 58(12): 1325-1332.
  10. Siangproh W., Rattanarat P., Chailapakul O. Reverse-phase liquid chromatographic determination of a-lipoic acid in dietary supplements using a boron-doped diamond electrode. J. Chromatogr. A. 2010; 1217(49): 7699-7705.
  11. Charoenkitamorn K., Chailapakul O., Siangproh W. Development of gold nanoparticles modified screen-printed carbon electrode for the analysis of thiram, disulfiram and their derivative in food using ultra-high performance liquid chromatography. Talanta. 2015; 132: 416-423.
  12. Nourooz-Zadeh J., Gopaul N.K., Forster L.A., Ferns G.A., Anggard E.E. Measurement of plasma probucol levels by high-performance liquid chromatography. J. Chromatogr. B: Biomed. Sci. Appl. 1994; 654(1): 55-60.
  13. Lee K.C., Chun Y.G., Kim I., Shin B.S., Park E.S., Yoo S.D. Development and validation of a reversed-phase fluorescence HPLC method for determination of bucillamine in human plasma using pre-column derivatization with monobromo-bimane. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2009; 877(22): 2130-2134.
  14. Haj-Yehia A.I., Assaf P., Nassar T., Katzhendler J. Determination of lipoic acid and dihydrolipoic acid in human plasma and urine by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. A. 2000; 870(1-2): 381-388.
  15. Khan A., Khan M.I., Iqbal Z., Ahmad L., Shah Y., Watson D.G. Determination of lipoic acid in human plasma by HPLC-ECD using liquid-liquid and solid-phase extraction: Method development, validation and optimization of experimental parameters. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2010; 878(28): 2782-2788.
  16. Zhang L., Jiang Y., Jing G., Tang Y., Chen X., Yang D. A novel UPLC-ESI-MS/MS method for the quantitation of disulfiram, its role in stabilized plasma and its application. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2013; 937: 54-59.
  17. Chen J., Jiang W., Cai J., Tao W., Gao X., Jiang X. Quantification of lipoic acid in plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2005; 824(1-2):249-257.
  18. Charoenkitamorn K., Chaiyo S., Chailapakul O., Siangproh W. Low-cost and disposable sensors for the simultaneous determination of coenzyme Q10 and a-lipoic acid using manganese (IV) oxide-modified screen-printed graphene electrodes. Anal. Chim. Acta. 2018; 1004: 22-31.
  19. Smarzewska S., Festinger N., Skowron M., Guziejewski D., Metelka R., Brycht M. Voltammetric analysis of disulfiram in pharmaceuticals with a cyclic renewable silver amalgam film electrode. Turkish J. Chem. 2017; 41(1): 116-124.
  20. Marin M., Lete C., Manolescu B.N., Lupu S. Electrochemical determination of a-lipoic acid in human serum at platinum electrode. J. Electroanal. Chem. 2014; 729: 128-34.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies