Features of metabolism and spectrum of action of selenium, possibilities of application of selene-containing food supplements under SARS-CoV-2 pandemic conditions


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This article provides a literary review of domestic and foreign sources reflecting the prevalence of selenium (Se) in the environment, its metabolism in the human body. It has been shown that Se deficiency is associated with cardiovascular diseases, disorders in the endocrine and reproductive system. The role of Se in the antioxidant defense system that supports the redox homeostasis of the cell and the body, for example, in viral infections, one of the causes of which is oxidative stress, is presented. The above sources also reflect the positive role of Se in viral infections, including, with a new coronavirus infection caused by the SARS-CoV-2 virus, since Se is necessary for the differentiation and proliferation of a number of immune cells involved in the processes of innate and adaptive immunity. It has been proven that in moderate doses, the Se supplement increases the proliferation of T cells and the activity of natural killer cells. In this regard, it is possible to recommend taking dietary supplements containing Se in high-risk areas and /or shortly after suspected infection with SARS-CoV-2. Positive research results, as well as a good safety profile, indicate the possibility of using biologically active food additives containing Se in complex therapy, in particular SELENBIO for women in disorders of the cardiovascular, endocrine, reproductive system, as well as in infectious diseases.

Full Text

Restricted Access

About the authors

E. V. Okladnikova

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru

Ph.D. (Med.), Associate Professor of the Department of Pharmacology and Clinical Pharmacology with a Postgraduate Course

T. V. Potupchik

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru

Ph.D. (Med.), Associate Professor of the Department of Pharmacology and Qinical Pharmacology with a Postgraduate Course

L. S. Evert

Federal Research Center "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences"; Research Institute of Medical Problems of the North - a Separate Division; Khakass State University named after N.F. Katanov

Email: potupchik_tatyana@mail.ru

Dr.Sc. (Med.), Chief Researcher, the Clinical Department of Somatic and Mental Health of Children; Professor, the Department of General Professional Disciplines, Medical, Psychological and Social Institute

O. F. Veselova

Krasnoyarsk State Medical University named after Professor V.F. Voino-Yasenetsky of the Ministry of Health of the Russian Federation

Email: potupchik_tatyana@mail.ru

Ph.D. (Med.), Head of the Department of Pharmacology and Qinical Pharmacology with a Postgraduate Course

Ya. E. Shirobokov

Samara State Medical University

Author for correspondence.
Email: potupchik_tatyana@mail.ru

Post-graduate Student, Department of Management and Economics of Pharmacy

References

  1. Варламова Е.Г. Микроэлемент селен: уникальные свойства, встречаемость в природе, ключевые функции селенсодержащих соединений, роль в здоровье: Монография. М.: Русайнс, 2018.
  2. Weng L., Vega F.A., Supriatin S., Bussink W., Van Riemsdijk W.H. Speciation of Se and DOC in soil solution and their relation to Se bioavailability. Environ. Sci. Technol. 2011; 45: 262-267. D01:10.1021/es1016119.
  3. Winkel L.H., Vriens B., Jones G.D., Schneider L.S., Pilon-Smits E., Banuelos G.S. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients. 2015; 7: 4199-4239. D01:10.3390/nu7064199.
  4. Raina M., Sharma A., Nazir M, Kumari P., Rustagi A., Hami A., Bhau B.S., Zargar S.M., Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol Plant. 2021; 171(4): 882-895. doi: 10.1111 /ppl. 13275.
  5. Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the environment, metabolism and involvement in body functions. Molecules. 2013; 18: 3292-3311. DOI :10.3390/molecules 18033292.
  6. Terry N., Zayed A.M., De Souza M.P., Tarun A.S. SELENIUM IN HIGHER PLANTS. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000; 51: 401-432. doi: 10.1146/annurev. arplant. 51.1.401.
  7. Filippini T., Michalke B., Wise L.A., Malagoli C., Malavolti M., Vescovi L., Salvia C., Bargellini A., Sieri S., Krogh V., Ferrante M., Vinceti M. Diet composition and serum levels of selenium species: A cross-sectional study. Food Chem Toxicol. 2018; 115: 482-490. doi: 10.1016/j.fct.2018.03.048.
  8. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 1337-1383. doi: 10.1089/ars.2010.3275. Epub 2011 Jan 6. PMID: 20812787.
  9. Rayman M.P., Infante H.G., Sargent M. Food-chain selenium and human health: Spotlight on speciation. Br. J. Nutr. 2008 Aug; 100(2): 238-253. doi: 10.1017/S0007114508922522.
  10. Plateau P., Saveanu C., Lestini R., DauplaisM., Decourty L., Jacquier A., Blanquet S., Lazard M. Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Sci. Rep. 2017; 7: 44761. doi: 10.1038/srep44761.
  11. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 1337-1383. doi: 10.1089/ars.2010.3275.
  12. Huang W., Akesson B., Svensson B.G., Schutz A., Burk R.F., Skerfving S. Selenoprotein P and glutathione peroxidase (EC 1.11.1.9) in plasma as indices of selenium status in relation to the intake of fish. Br. J. Nutr. 1995; 73(3): 455-461. doi: 10.1079/bjn19950047.
  13. Bulteau A.L., Chavatte L. Update on selenoprotein biosynthesis. Antioxid Redox Signal. 2015; 23(10): 775-794. doi: 10.1089/ars.2015.6391.
  14. Carlson B.A., Lee B.J., Tsuji P.A., Tobe R., Park J.M., Schweizer U., Gladyshev V.N., Hatfield D.L. Selenocystein et RNA [Ser]Sec: From Nonsense Suppressor tRNA to the Quintessential Constituent in Selenoprotein Biosynthesis. In: Hatfield D.L., Tsuji P.A., Gladyshev V.N., editors. Selenium: Its Molecular Biology and Role in Human Health. 4th ed. Springer Science+Business Media, LLC; New York, NY, USA, 2016.
  15. Hill K.E., Zhou J., McMahan W.J., Motley A.K., Atkins J.F., Gesteland R.F., Burk R.F. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 2003; 278(16): 13640-13646. doi: 10.1074/jbc.M300755200.
  16. Raman A. V., Pitts M. W., Seyedali A., Hashimoto A.C., Seale L.A., Bellinger F.P., Berry M.J. Absence of selenoprotein P but not selenocysteine lyase results in severe neurological dysfunction. Genes. Brain. Behav. 2012; 11(5): 601-613. doi: 10.1111/j.1601-183X.2012.00794.x.
  17. Cui S., Men L., Li Y., Zhong Y., Yu S., Li F., Du J. Selenoprotein S Attenuates Tumor Necrosis Factor-alpha-Induced Dysfunction in Endothelial Cells. Mediat. Inflamm. 2018; 2018: 1625414. doi: 10.1155/2018/1625414.
  18. Ye Y., Fu F., Li X., Yang J., Liu H. Selenoprotein S Is Highly Expressed in the Blood Vessels and Prevents Vascular Smooth Muscle Cells From Apoptosis. J. Cell Biochem. 2016; 117(1): 106-117. doi: 10.1002/jcb.25254.
  19. Zhang Y., Roh Y.J., Han S.J., Park I., Lee H.M., Ok Y.S., Lee B.C., Lee S.R. Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants (Basel). 2020; 9(5): 383. doi: 10.3390/antiox9050383.
  20. Marciel M.P., Hoffmann P.R. Molecular Mechanisms by Which Selenoprotein K Regulates Immunity and Cancer. Bi ol. Trace Elem. Res. 2019; 192 (1): 60-68. doi: 10.1007/s12011-019-01774-8).
  21. Lee J.H., Park K.J., Jang J.K., Jeon Y.H., Ko K.Y., Kwon J.H., Lee S.R., Kim I.Y. Selenoprotein S-dependent Selenoprotein K Binding to p97(VCP) Protein Is Essential for Endoplasmic Reticulum-associated Degradation. J. Biol. Chem. 2015; 290(50): 29941-29952. doi: 10.1074/jbc.M115.680215
  22. Pothion H., Jehan C., Tostivint H., Cartier D., Bucharles C., Falluel-Morel A., Boukhzar L., Anouar Y., Lihrmann I. Selenoprotein T: An Essential Oxidoreductase Serving as a Guardian of Endoplasmic Reticulum Homeostasis. Antioxid Redox Signal. 2020; 33(17): 1257-1275. doi: 10.1089/ars.2019.7931.
  23. Rocca C., Pasqua T., Boukhzar L., Anouar Y., Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: Focus on endoplasmic reticulum-resident selenoproteins. Cell Mol. Life Sci. 2019; 76(20): 3969-3985. doi: 10.1007/s00018-019-03195-1.
  24. Merk D., Ptok J., Jakobs P, von Ameln F., Greulich J., Kluge P., Semperowitsch K., Eckermann O., Schaal H., Ale-Agha N., Altschmied J., Haendeler J. Selenoprotein T Protects Endothelial Cells against Lipopolysaccharide-Induced Activation and Apoptosis. Antioxidants (Basel). 2021; 10(9): 1427. doi: 10.3390/antiox10091427.
  25. Ma C., Martinez-Rodriguez V., Hoffmann P.R. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation.Int J Mol Sci. 2021; 22(20): 11174. doi: 10.3390/ijms222011174.
  26. Kim H, Lee K., Kim J.M., Kim M.Y., Kim J.R., Lee H.W., Chung Y.W., Shin H.I., Kim T., Park E.S., Rho J., Lee S.H., Kim N., Lee S.Y., Choi Y., Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nat.Commun. 2021; 12(1): 2258. doi: 10.1038/s41467-021-22565-7.
  27. Панина И.С., Филатова Л.Ю., Кабанов А.В., Клячко Н.Л. Исследование физико-химических свойств фермента глутатионпероксидазы типа 1 и его комплексов с полиэлектролитами как перспективных агентов для лечения заболеваний центральной нервной системы. Вестник Московского университета. 2014; 55(3): 153-157.
  28. Guillin O.M., Vindry C., Ohlmann T., Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients. 2019; 11(9): 2101. doi: 10.3390/nu11092101.
  29. Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013; 1830(5): 3289-3303. doi: 10.1016/j.bbagen.2012.11.020.
  30. Arner E.S.J. Selective Evaluation of Thioredoxin Reductase Enzymatic Activities. Methods Mol. Biol. 2018; 1661: 301-309. doi: 10.1007/978-1-4939-7258-6_21.
  31. Liu X., Zhang Y., Lu W., Han Y., Yang J., Jiang W., You X., Luo Y., Wen S., Hu Y., Huang P. Mitochondrial TxNRD3 confers drug resistance via redox-mediated mechanism and is a potential therapeutic target in vivo. Redox. Biol. 2020; 36: 101652. doi: 10.1016/j.redox.2020.101652.
  32. Tarrago L., Oheix E., Peterfi Z., Gladyshev V.N. Monitoring of Methionine Sulfoxide Content and Methionine Sulfoxide Reductase Activity. Methods Mol. Biol. 2018; 1661: 285-299. doi: 10.1007/978-1-4939-7258-6_20.
  33. Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011; 14(7): 1337-1383. doi: 10.1089/ars.2010.3275.
  34. Голубкина Н.А., Синдирева А.В., Зайцев В.Ф. Внутрирегиональная вариабельность селенового статуса населения. Юг России: экология, развитие. 2017; 12(1): 107-127.
  35. Сенькевич О.А., Ковальский Ю.Г., Голубкина Н.А. Мониторинг содержания селена в некоторых пищевых продуктах Хабаровска. Вопросы питания. 2018; 87(6): 89-94. doi: 10.24411/0042-8833-2018-10070.
  36. World Health Organization. Vitamin and Mineral Requirements in Human Nutrition. 2nd ed. World Health Organization; Geneva, Switzerland: 2005. [(accessed on 15 September 2021)]. Available online: https://apps.who.int/iris/handle/10665/42716.
  37. Gac P., Czerwinska K., Macek P., Jaremkow A., Mazur G., Pawlas K., Porqba R. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ Toxicol Pharmacol. 2021; 82: 103553. doi: 10.1016/j.etap.2020. 103553.
  38. Shimada B.K., Alfulaij N., Seale L.A. The Impact of Selenium Deficiency on Cardiovascular Function.Int. J. Mol. Sci. 2021; 22(19): 10713. doi: 10.3390/ijms221910713.
  39. Flohe L. Selenium in peroxide metabolism. Med. Klin. 1997; 92(3): 5-7. doi: 10.1007/BF03041948.
  40. Mirnamniha M., Faroughi F., Tahmasbpour E., Ebrahimi P., Harchegani A.B. An overview on role of some trace elements in human reproductive health, sperm function and fertilization process. Rev. Environ. Health. 2019; 34(4): 339-348. doi: 10.1515/reveh-2019-0008.
  41. Mistry H.D., Pipkin F.B., Redman C.W.G., Poston L. Selenium in reproductive health. Am. J. Obstet. Gynecol. 2012; 206(1): 21-30. doi: 10.1016/j.ajog.2011.07.034.
  42. Nikniaz L., Mahavi R., Ostadrahimi A., Nikniaz Z., Taghipour S. Synbiotic supplementation is not effective on breast milk selenium concentrations and growth of exclusively breast fed infants: a pilot study.Int. J. Vitam. Nutr. Res. 2019; 89(1-2): 73-79. doi: 10.1024/0300-9831/a000549.
  43. Loscalzo J. Keshandisease, seleniumdeficiency, andthese-lenoproteome. N. Engl. J. Med. 2014; 370(18): 1756-1560. doi: 10.1056/NEJMcibr1402199.
  44. Molteni C.G., Principi N., Esposito S. Reactive oxygen and nitrogen species during viral infections. Free Radic. Res. 2014; 48(10): 1163-1169. doi: 10.3109/10715762.2014.945443.
  45. Полубояринов П.А., Елистратов Д.Г., Швец В.И. Метаболизм и механизм токсичности селенсодержащих препаратов, используемых для коррекции дефицита микроэлемента селена. Тонкие химические технологии. 2019; 14(1): 5-24.
  46. Gorham J., Moreau A., Corazza F., Peluso L., Ponthieux F., Talamonti M., Izzi A., Nagant C., Ndieugnou Djangang N., Garufi A., Creteur J., Taccone F.S.Interleukine-6 in critically ill COVID-19 patients: A retrospective analysis. PLoS One. 2020;1 5(12): e0244628. doi: 10.1371/journal.pone.0244628.
  47. Bermano G., Meplan C., Mercer D.K., Hesketh J.E. Selenium and viral infection: are there lessons for COVID-19? Br. J. Nutr. 2021; 125(6): 618-627. doi: 10.1017/S0007114520003128.
  48. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr. 2015; 6(1): 73-82. doi: 10.3945/an.114.007575.
  49. Notz Q., Herrmann J., Schlesinger T., Helmer P., Sudowe S., Sun Q., Hackler J., Roeder D., Lotz C., Meybohm P., Kranke P., Schomburg L., Stoppe C. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients. 2021; 13(6): 2113. doi: 10.3390/nu13062113.
  50. Moghaddam A., Heller R.A., Sun Q., Seelig J., Cherkezov A., Seibert L., Hackler J., Seemann P., Diegmann J., Pilz M., Bachmann M., Minich W.B., Schomburg L. Selenium Deficiency Is Associated with Mortality Risk from COVID 19. Nutrients. 2020; 12(7): 2098. doi: 10.3390/nu12072098
  51. Notz Q., Herrmann J., Schlesinger T., Helmer P., Sudowe S., Sun Q., Hackler J., Roeder D., Lotz C., Meybohm P., Kranke P., Schomburg L., Stoppe C. Clinical Significance of Micronutrient Supplementation in Critically Ill COVID-19 Patients with Severe ARDS. Nutrients. 2021; 13(6): 2113. doi: 10.3390/nu13062113.
  52. Im J.H., Je Y.S., Baek J., Chung M.H., Kwon H.Y., Lee J.S. Nutritional status of patients with COVID-19.Int. J. Infect. Dis. 2020; 100:390-393. DOI: 10.1016/j. ijid.2020.08.018.
  53. Zhang J., Taylor E.W., Bennett K., Saad R., Rayman M.P. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am. J. Clin. Nutr. 2020; 111(6): 1297-1299. doi: 10.1093/ajcn/nqaa095.
  54. Alexander J., Tinkov A., Strand T.A., Alehagen U., Skalny A. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Aaseth J. Nutrients. 2020; 12(8): 2358. doi: 10.3390/nu12082358.
  55. Полубояринов П.А. Биофортификация растений астрагала Астрагала шерстистоцветкового (Astragalus dasyanthus Pall.) аминокислотой L-селеноцистеином. URL: https://www.seret-dolgolet.ru/biofortifikatsiya-rasteniy-astra-galasherstistotsvetkovogo-astragalus-dasyanthus-pall-amino-kislotoy-lselenotsistinom/(дата обращения 13.12.2021).
  56. Полубояринов П.А., Елистратов Д.Г., Швец В.И. Метаболизм и механизм токсичности селенсодержащих препаратов, используемых для коррекции дефицита микроэлемента селена. Тонкие химические технологии. 2019; 14(1): 5-24.
  57. Shahidi F., De Camargo A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits.Int. J. Mol. Sci. 2016; 17(10): 1745. doi: 10.3390/ijms17101745.
  58. Борисов В.В. Микроэлементы селен и цинк в организме женщины и мужчины: проблемы и решения. Consilium Medicum. 2018; 20(7): 63-68.
  59. Дедов Д.В. Cелен и селенсодержащие препараты: значение для организма и профилактики различных заболеваний. Фармация. 2021; 70(8): 54-57. doi: 10.29296/25419218-2021-08-09.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies