Biocatalysis as a tool for optimizing pharmaceutical synthesis of drugs (review)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Relevance. Competitiveness and recognition of Russian drugs in the pharmaceutical market is possible only if the domestic product and its technology are inscribed in the paradigm of the development of advanced global pharmaceutical production, the priority drivers of which are environmental friendliness and economic efficiency. The introduction of "green technologies", and in particular the principles of "green chemistry", is a clear manifestation of the current trend and demand for the future in the development and production of medicines. The most interesting from a theoretical point of view and promising in practical terms is the optimization of the processes of synthesis of pharmaceutical substances through the introduction of enzyme synthesis. The goal is to show the prospects for the use of biocatalysis in the synthesis of drugs. Material and methods. The materials were scientific publications and patents devoted to modern problems and ways to solve them in the field of "green chemistry", "biocatalysis" and "synthesis of pharmaceutical substances". When writing the review, the following methods were used: systematization, comparison, analysis and generalization. Results. The review gives a brief historical description of the "waves of biocatalysis", considers the most striking examples of the modern application of enzyme catalysis in the world practice of pharmaceutical synthesis, generalizes the general prospects for the use of biocatalysis in the synthesis of drugs. The article shows that chemoenzymatic synthesis is economical, increases the purity of the target product, especially its "stereopurity", allows the synthesis of new drugs, which were previously difficult or even impossible to obtain according to classical schemes. It is concluded that, despite sufficient experimental material in related scientific fields, in our country there is practically no development of the direction on the use of enzyme synthesis in the development and production of medicines.

Full Text

Restricted Access

About the authors

S. V Pechinskii

Pyatigorsk Medical Pharmaceutical Institute - Branch of Volgograd State Medical University

Author for correspondence.
Email: hplc@yandex.ru
Ph.D. (Pharm.), Associate Professor

References

  1. Anastas P.T., Warner J.C. Green chemistry: theory and practice. New York: Oxford University Press, 1998.
  2. Truppo M.D. Biocatalysis in the pharmaceutical industry: the need for speed. ACS Medicinal Chemistry Letters. 2017; 8(5): 476-480. doi: 10.1021/acsmedchemlett.7b00114.
  3. База данных медицинских и биологических публикаций Национального центра биотехнологической информации (NCBI) США. https://pubmed.ncbi.nlm.nih.gov.
  4. Federsel H.J., Moody T.S., Taylor S.J.C. Recent trends in enzyme immobilization-concepts for expanding the biocatalysis toolbox. Molecules. 2021; 26(9): 2822. doi: 10.3390/molecules26092822.
  5. Gkantzou E., Chatzikonstantinou A.V., Fotiadou R., Giannakopoulou A., Patila M., Stamatis H. Trends in the development of innovative nanobiocatalysts and their application in biocatalytic transformations. Biotechnol. Adv. 2021; 51: 107738. doi: 10.1016/j.biotechadv.2021.107738.
  6. Buchholz K., Poulson P.B. Overview of history of applied biocatalysis, in: Applied biocatalysis edited by Straathof A.J.J., Adlercreutz P. Amsterdam: CRC Press, 2000.
  7. Stein R.L. A Process Theory of enzyme catalytic power - the interplay of science and metaphysics. Found Chem. 2006; 8: 3-29. doi.org/10.1007/s10698-005-7907-8.
  8. Rastall R.A., Bucke Ch. Enzymatic synthesis of oligosaccharides. Biotechnology and genetic engineering reviews. 1992; 10(1): 253-282. doi: 10.1080/02648725.1992.10647890report2020.novozymes.com.
  9. Biotech powerhouse «Novozymes»: https://www.novozy-mes.com/en.
  10. Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012; 485: 185-194. doi.org/10.1038/nature11117.
  11. Tischer W. Umweltschutz durch technische Biokatalysatoren, in Symposium Umweltschutz durch Biotechnik. Boehringer Mannheim GmbH, 1990.
  12. Currin A., Swainston N., Day P.J., Kell D.B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 2015; 44: 1172-1236. doi.org/10.1039/C4CS00351A.
  13. Davis A., Plowright A., Valeur E. Directing evolution: the next revolution in drug discovery? Nat Rev Drug Discov. 2017; 16: 681-698. doi.org/10.1038/nrd.2017.146.
  14. Bornscheuer U.T., Hauer B., Jaeger K.E., Schwaneberg U. Directed evolution empowered redesign of natural proteins for the sustainable production of chemicals and pharmaceuticals. Angewandte Chemie. 2019; 58: 36-40. doi.org/10.1002/anie.201812717.
  15. Illane A. Dr. Frances Arnold is awarded with the Nobel Prize in Chemistry 2018: Good news for biocatalysis. Electronic Journal of Biotechnology. 2018; 36: A1. doi.org/10.1016/j.ejbt.2018.10.001.
  16. Jones C. W. Another nobel prize for catalysis: Frances Arnold in 2018. ACS Catal. 2018; 8: 10913-10913. doi.org/10.1021/acscatal.8b04266.
  17. Sheldon R.A., Brady D. The limits to biocatalysis: pushing the envelope. Chem. Commun. 2018; 54: 6088-6104. doi.org/10.1039/C8CC02463D.
  18. Woodley J.M. Accelerating the implementation of biocatalysis in industry. Appl Microbiol Biotechnol. 2019; 103: 47334739. doi.org/10.1007/s00253-019-09796-x.
  19. Poppe L., Vertessy B.G. The Fourth Wave of Biocatalysis Emerges - The 13th International Symposium on Biocatalysis and Biotransformations. ChemBioChem. 2018; 19(4): 284-287. doi.org/10.1002/cbic.201700687.
  20. Bornscheuer Uwe T. The fourth wave of biocatalysis is approaching. Phil. Trans. R. Soc. A. 2018; 376(2110): 1-7. doi.org/10.1098/rsta.2017.0063.
  21. Paul T. Anastas, Tracy C. Williamson Green chemistry. ACS Symposium Series. 1996; 626: 1-17. doi: 10.1021/bk-1996-0626.ch001.
  22. Achille Antenucci, Stefano Dughera, Polyssena Renzi Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. ChemSusChem. 2021; 14(14): 2785-2853. doi: 10.1002/cssc.202100573.
  23. Marian C. Bryan, Peter J. Dunn, David Entwistle, Fabrice Gallou, Stefan G. Koenig, et al. Green chemistry meets asymmetric organocatalysis: a critical overview on catalysts synthesis. Green Chem. 2018; 20: 5082-5103. doi: 10.1039/C8GC01276H.
  24. Organization for Economic Co-operation and Development (OECD). The Application of biotechnology to industrial sustainability. Paris: OECD Publishing, 2001. doi.org/10.1787/9789264195639-en.
  25. Faber K., Fessner W.-D., Turnerhttps N.J. Biocatalysis: Ready to master increasing complexity. Adv. Synth. Catal. 2019; 361: 2373-2376. doi.org/10.1002/adsc.201900610.
  26. Roschangar F., Colberg J., Dunn P.J., Gallou F., Hayler J. D., et al. A deeper shade of green: inspiring sustainable drug manufacturing. Green Chem. 2017; 19: 281-285. https://doi.org/10.1039/C6GC02901A.
  27. McElroy C. Robert, Constantinou Andri, Jones Leonie C., Summertona Louise, Clarkhttps James H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 2015; 17: 3111-3121. doi.org/10.1039/C5GC00340G.
  28. Uwe T. Bornscheuer (Chemo-) enzymatic cascade reactions. Zeitschrift fur Naturforschung. 2019; 74(3-4): 61-62. doi.org/10.1515/znc-2019-0016.
  29. Rudroff F. Whole-cell based synthetic enzyme cascades - light and shadow of a promising technology. Current Opinion in Chemical Biology. 2019; 49: 84-90. doi.org/10.1016/j.cbpa.2018.10.016.
  30. Ramesh Hemalata, Nordblad Mathias, Whittall John, Woodley John M. Considerations for the application of process technologies in laboratoryand pilot-scale biocatalysis for chemical synthesis. Practical methods for biocatalysis and biotransformations 3. John Wiley & Sons, Ltd Print, 2016. doi.org/10.1002/9781118697856.ch01.
  31. Luke Rogers, Klavs F. Jensenhttps Continuous manufacturing - the Green Chemistry promise? Green Chem., 2019; 21: 3481-3498.doi.org/10.1039/C9GC00773C.
  32. Britton J., Majumdar S., Weiss G.A. Continuous flow biocatalysis. Chem. Soc. Rev. 2018; 47: 5891-5918. doi.org/10.1039/C7CS00906B.
  33. Lorenz P., Eck J. Screening for Novel Industrial Biocatalysts. Eng. Life Sci. 2004; 4(6): 501-504. doi.org/10.1002/elsc.200402159.
  34. Robertson D.E., Steer B.A. Recent progress in biocatalyst discovery and optimization. Curr Opin Chem Biol. 2004; 8(2): 141-149. doi: 10.1016/j.cbpa.2004.02.010.
  35. Robinson P. K. Enzymes: principles and biotechnological applications. Essays Biochem. 2015; 59(15): 1-41. doi: 10.1042/bse0590001.
  36. Noeya E. L., Tibrewalb N., Jimenez-Osesa G., Osunaa S., Parka J., et al. Origins of stereoselectivity in evolved ketoreductases. PNAS. 2015; 112(51): E7065-E7072. doi.org/10.1073/pnas.1507910112
  37. de Maria P.D., de Gonzalo G., Alcantara A.R. Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014-2019). Catalysts. 2019; 9 (802): 2-42. https://doi.org/10.3390/catal9100802.
  38. ZHEJIANG CHANGMING PHARMACEUTICAL CO Ltd. Patent CN105063120B. Publ. Date 07.08.2018.
  39. Zheng G., Chen Q. Patent CN104164469B. Publ. Date 26.11.2014.
  40. Mauro Gaboardi, Giuseppe Pallanza, Marco Baratella, Graziano Castaldi, Marta Castaldi. Patent WO2017144423A1. Publ. Date 31.08.2017.
  41. Kossaify A. Vernakalant in Atrial Fibrillation: A relatively new weapon in the armamentarium against an old enemy. Drug Target Insights. 2019; 13(1): 1-7. doi: 10.1177/1177392819861114.
  42. Limanto J., Ashley E.R., Yin J., Beutner G.L., Grau B.T., et al. A highly efficient asymmetric synthesis of vernakalant. Org. Lett. 2014; 16(10): 2716-2719. doi.org/10.1021/ol501002a.
  43. Debarge S., Erdman D.T., O'neill P.M., Kumar R., Karmilowicz M.J. Patent WO2014155291A1. Publ. Date 02.10.2014.
  44. Rother D., Poh M., Sehl T., Baraibar A.G. Patent WO2014198247A1. Publ. Date 18.12.2014.
  45. Bauer D.W., Hu S., O'neil P.M., Watson T. Patent WO2009019561A2 Publ. Date 14.05.2009.
  46. Wang W., Taber D.F., Renata H. Practical enzymatic production of carbocycles. Chemistry. 2021; 27(46): 11773-11794. doi: 10.1002/chem.202101232.
  47. Federsel H.J., Moody T.S., Taylor S.J.C. Recent trends in enzyme immobilization-concepts for expanding the biocatalysis toolbox. Molecules. 2021; 26(9): 2822. doi: 10.3390/molecules26092822.
  48. Ayala M., Segovia L., Torres E. Halogenases: a biotechnological alternative for the synthesis of halogenated pharmaceuticals. Mini Rev Med Chem. 2016; 16(14): 1100-1111. doi: 10.2174/1389557516666160623100619.
  49. Li G., Wang J.B., Reetz M.T. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem. 2018; 26(7): 1241-1251. doi: 10.1016/j.bmc.2017.05.021.
  50. Jiang W., Fang B. Synthesizing chiral drug intermediates by biocatalysis. Appl Biochem Biotechnol. 2020; 192(1): 146179. doi: 10.1007/s12010-020-03272-3.
  51. Tian C., Xiu P., Meng Y., Zhao W., Wang Z., Zhou R. Enantiomerization Mechanism of Thalidomide and the Role of Water and Hydroxide Ions. Chemistry А. European Journal. 2012; 18(5): 14305-14313. doi.org/10.1002/chem.201202651.
  52. Bezborodov A.M., Zagustina N.A. Enzymatic biocatalysis in chemical synthesis of pharmaceuticals (Review). Appl Biochem Microbiol. 2016; 52: 237-249. doi.org/10.1134/S0-003683816030030.
  53. Hoyos P., Pace V., Hernaiz M.J., Alcantara A.R. Biocatalysis in the pharmaceutical industry. A greener future. Current Green Chemistry. 2014; 1(2): 115-181 doi: 10.2174/2213346-101666131113201722.
  54. Huffman M.A., Fryszkowska A., Alvizo O., Borra-Garske M., Campos K.R., et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science. 2019; 366(6470): 1255-1259. doi: 10.1126/science.aay8484.
  55. Del Arco J., Acosta J., Fernandez-Lucas J. New trends in the biocatalytic production of nucleosidic active pharmaceutical ingredients using 2'-deoxyribosyltransferases. Biotechnol Adv. 2021; 51: 107701. doi: 10.1016/j.biotec-hadv.2021.107701.
  56. InterPro. Classification of protein families: https://www.ebi.ac.uk/interpro.
  57. PfamScan. PfamScan is used to search a FASTA sequence against a library of Pfam HMM: https://www.ebi.ac.uk/T.ools/pfa/pfamscan.
  58. Selenzyme: Enzyme Selection Tool: http://selenzyme.syn-biochem.co.uk.
  59. Carbonell P., Wong J., Swainston N., Takano E., Turner N.J., et al. Selenzyme: enzyme selection tool for pathway design. Bioinformatics. 2018; 34(12): 2153-2154. doi.org/10.1093 /bioinformatics/bty065.
  60. Rahman S., Cuesta S., Furnham N., Holliday G.L., Thornton J.M. EC-BLAST: a tool to automatically search and compare enzyme reactions. Nature Methods. 2014; 11: 171-174. doi.org/10.1038/nmeth.2803.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The number of annual publications on the subject of "green technology" according to the website https://pubmed.ncbi.nlm.nih.gov

Download (73KB)
3. Fig. 2. The number of annual publications on the subject of "green chemistry" according to the website https://pubmed.ncbi.nlm.nih.gov

Download (81KB)
4. Fig. 3. Scheme of biocatalytic synthesis of 6-aminopenicillanic acid [10]

Download (51KB)
5. Fig. 4. Enantioselective synthesis of Fosamprenavir and Sulopenem [36]

Download (54KB)
6. Fig. 5. Biocatalytic synthesis of selective β3-adrenergic receptor agonists [37]

Download (37KB)
7. Fig. 6. Chemoenzyme synthesis of Levetiracetam [38]

Download (54KB)
8. Fig. 7. Enzyme synthesis of Ticagrelor [39]

Download (45KB)
9. Figure 8. Biocatalytic synthesis of Sofosbuvir [40]

Download (62KB)
10. Fig. 9. Stereoselective enzyme synthesis of Vernakalant [41]

Download (41KB)
11. Fig. 10. Synthesis of pregabalin with transaminases [43]

Download (32KB)
12. Fig. 11. Stereoselective synthesis of Cathine [44]

Download (34KB)
13. Fig. 12. Chemoenzyme method of statin synthesis [53]

Download (33KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies